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Chapter 1

Introduction

There has been great interest in the study of neural networks, and this interest has

led to the creation of many different structures which are all called "networks". In

this thesis I will discuss algorithms for training "layered feedforward networks".

A layered feedforward network is a network which has a distinct set of input units

onto which values are clamped. These values are then passed through a set of

weights to produce the inputs to the next layer of "hidden" or internal units.

These units modify their input using a nonlinear function (usually sigmoid in

shape) to produce their outputs. As many layers as desired of this form can be

stacked, and the units of the final layer become the outputs of the network. The

purpose of a learning algorithm is to adjust the weights between units (but not the

nonlinearity) so that the output gives some desired function of the input. Note

that the nonlinearity is essential, since several layers of purely linear units can

always be compressed into an equivalent single layer (by matrix multiplication)

and therefore add no further 'computational ability to the network.

10



1.1. WHY USE NETWORKS? 11

1.1 Why use Networks?

Networks are difficult to train, and often have trouble performing even the simplest

computations. So why have they sparked so much interest? There are four basic

reasons for their current popularity:

1. They can learn to perform tasks for which computational algorithms may

not exist.

2. They can adapt their behavior to a changing envirinment.

3. They may be a model for biological information processing.

4. They operate on distributed and fault-tolerant hardware.

We should emphasize at this point that these four properties are not always found

in current models, and may be very difficult to achieve using neural networks at

all. At the moment there is only the hope that networks may provide a useful

structure for the design of algorithms which have perhaps some, but not all, of

these properties.

The first property may be the most important for practical purposes. For

many problems of current interest in computer science and artificial intelligence,

the level of understanding of the problem and the means to solve it is quite

poor. Self-training networks provide the possibility of solving a problem which

we do not completely understand. For example, in computer vision, we might

want to perform texture segmentation on an image, even though we do not have

a clear specification of what we mean by "texture". We do, however, have the

ability to specify how any algorithm should perform on particular examples, so

if a network can be trained to discover an algorithm based upon examples, then

it might be able to generalize to solve the problem for cases it has not yet seen.

This is a form of "programmerless programming". since we do not even need to

specify the problem in an exact way, yet a -program" to solve it can be found.
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Thus all that one would need to train a network to discover an algorithm is an

error measure which indicates whether the network has succeeded in finding the

"correct" answer.

The use of networks to discover new algorithms depends crucially on their

ability to generalize. Generalization refers to a trained network's ability to find a

correct output when given an input on which it has not been trained. If successful,

this is an indication* that the network has somehow discovered the underlying

structure of the problem. If a network does somehow find this structure, one

might hope that subsequent analysis of the network structure would reveal the

algorithm which it had discovered and thereby contribute to our understanding of

the original problem. Unfortunately, generalization is an ill-posed problem, since a

finite set of samples of a desired function is consistent with an infinite-dimensional

class of possible functions. We therefore need to impose further constraints on

the types of functions which the network can learn, in order for it to produce a

useful mapping.

The second reason for using neural networks is their inherent adaptability. If

their behavior was learned in the first place, then re-learning based on a changing

environment may be relatively easy to implement. This is standard behavior for

higher-level biological organisms, and mimicking this type of biological behavior

is a primary goal for networks.

It is also hoped that successful neural networks may be able to guide neuro-

physiological research by providing models for the computational abilities of large

interconnected systems of simple processing units. The more we understand the

mathematics of such systems, the better we may be able to analyze data provided

from electrophysiology studies of primate cortex.

Finally, it seems that networks may be relatively robust with respect to mal-

function or loss of components. Unlike modern digital computers, for which any

hardware malfunction is catastrophic, parts of a network can be destroyed with
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only a proportionate decrease in processing accuracy. This may have considerable

implications for wafer-scale integrated components where the yield rate of 100%

functional circuits is very low, and fault-tolerance is therefore required.

Networks with these properties may provide important advantages over other

methods of solving specific problems. However, it is important to realize that

current models do not perform well on real-world data, and that neural networks

have so far been able to solve only the simplest of tasks. Research on networks is

stimulated by the hope that in the future they will provide an important set of

algorithms with properties different from those of more classic techniques.

1.2 Current Algorithms

Algorithms for training neural networks to compute input-output mappings are

often divided into the categories of "supervised" and "unsupervised" learning.

(For review, see [Hinton, 1987, Lippmann, 1987].) Supervised learning involves a

knowledgeable teacher who for each example provided as input to the network,

tells the network the correct (desired) output. In unsupervised learning no such

teacher is available, and the network is left to discover useful computations on

its own. Of course, implicit in the unsupervised learning algorithm is a set of

mappings which it is desirable for the network to learn, and the properties which

describe this set of mappings were determined by the programmer and may be

quite specific (even if the programmer is unable to discover them himself in closed

form). For our purposes, the difference between a supervised and an unsupervised

learning algorithm lies in the fact that for a supervised algorithm the object of

learning is to approximate a particular desired input-output mapping, whereas

for unsupervised learning the object is to find a mapping which possesses certain

specified properties. Clearly, there is a continuum of learning types between these

two extremes. but this intuitive notion should suffice.
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The true significance of the desired properties implicit in an unsupervised

algorithm is that they allow networks to generalize. As mentioned above, general-

ization is an ill-posed problem if we are given only a finite number of samples of a

function. However, if we combine these samples with a property which describes

the class of functions which we will fit to the data, then we can restrict the pos-

sible computations done by the network. In this way, we are able to add enough

additional constraints to the problem that the solutions found by the network may

actually perform in a reasonable manner on data not in the training set.

Designing a training algorithm for a particular type of network therefore in-

volves two major steps. The first step is to choose a set of desirable properties

which the network should possess after training, and the second step is to find

a learning algorithm which causes the network to attain these properties. Since

we usually do not know beforehand whether a set of weights exists which accom-

plishes this, it can be useful to specify the desired properties in terms of a metric

on the set of networks which we attempt to maximize. This formalizes the idea

of a net which is "pretty good" for solving a task which perhaps might be better

solved by some other structure. The network is not actually required to achieve

the desired properties, but it can come close and still be useful. By considering

networks in this way, the problem of finding a learning algorithm reduces to a con-

strained optimization problem. Since such problems tend to be very difficult and

solutions tend to be problem-specific, we might expect that learning algorithms

will have to be adapted specifically to the desired properties and the particular

network structure involved.

We will refer to a desirable property of a network as an "optimality principle'.

Examples of such principles and some feedforward networks which employ them

are given in table 1.2. The optimality principle which we will use to choose

an algorithm is based on the idea of maximizing information which was first

proposed by Linsker [Linsker, 1986a, Linsker. 1988b]. Unfortunately measuring
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TABLE 1. Some Feedforward networks and their Optimality
Principles

Network Optimality Principle Algorithm
Backprop RMS function approximation error Gradient descent
Encoder BP RMS input approximation error Gradient descent
Topological Output topology matches input topology Winner-take-all
Linsker Infomnax - maximize output information Hebbian learning

the information in network outputs can be difficult without precise knowledge of

the distribution on the input data, so we seek another measure which is related to

information but which is easier to compute. If instead of maximizing information,

we try to maximize our ability to reconstruct the input (with minimum mean-

squared error) given the output of the network, we are able to obtain some useful

results. Note that this is not equivalent to maximizing information except in some

special cases. However, it contains the intuitive notion that the input data is being

represented-by the network in such a way that very little of it has been "lost".

1.2.1 Supervised Algorithms

In supervised learning, the network is presented with an example input and the

desired output, and the weights between units are modified in such a way that

it will be more likely to produce that output in the future in response to that

input. Success in training is usually measured by the mean squared difference

between the desired and actual outputs. This constitutes the optimality principle

for many supervised algorithms, but it is important to note that there is still

an infinite-dimensional space of functions which may minimize the mean-squared

error. The constraints on these functions are implicit in the network structure.

since a particular combination of linear layers and smooth nonlinear functions
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may constrain the computation to have certain smoothness properties. In this

sense, the network is performing a smooth approximation to the sample points

which it is given as training data.

One of the earliest supervised algorithms for a single-layer network is the

Widrow-Hoff algorithm [Widrow and Hoff, 1960, Widrow et al., 1976]. This al-

gorithm can be proven to converge to a network in which the outputs are the

optimal linear estimate of the desired output given the input. In its original form,

this algorithm was suitable only for single-layer linear networks.

A variant of the Widrow-Hoff algorithm in which the outputs are forced to

take the values -1,1 is the Perceptron Learning Rule[Rosenblatt, 1962]. This

algorithm is used to train a single-layer network in which the output units are

processed by a thresholding nonlinearity which forces them to assume one of two

values. The purpose of the network is to classify inputs into groups based on

decision regions of input space. The algorithm is a straightforward variation of the

Widrow-Hoff algorithm, and can also be proven to converge whenever a solution

exists [Rosenblatt, 1962]. When used in a multilayered network, however, the fact

that the output of the first layer is boolean valued means that subsequent layers

can do no more than compute boolean functions of the decision regions defined by

the first layer (Minsky and Papert, 19691. This means that all the "interesting"

learning is occurring in the first layer, and the multi-layered architecture is not

adding significant processing power.

For training multilayer feedforward networks, the most common algorithm is

backpropagation, discovered independently in different forms by [Werbos, 1974, Le

Cun, 1985, Parker, 1985, Rumelhart et al., 1986b]. The backpropagation algo-

rithm performs gradient descent in the space of the weights between units, along

gradients of an error function defined by the mean-squared error in the outputs. It

is possible to determine the direction of steepest descent for each weight indepen-

dently using a clever recursive algorithm which propagates -'error" terms from the
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output units backwards through the network. Backpropagation can be thought

of as the "canonical" supervised learning procedure, since it uses the least infor-

mation about the problem to minimize a standard supervised-type error. Like

all gradient descent methods, it cannot be proven to converge to the optimal set

of weights, and convergence can be arbitrarily slow due to shallow slopes on the

energy surface.

Backpropagation has been applied to many different problems, and several

modifications have been proposed to decrease the training time (for a partial re-

view, see [Hinton, 1987]). However, training time still seems to be an exponential

function of the number of units in the network. (The general learning problem

has been shown to be NP-complete [Judd, 1987].) Also, there is no well-developed

theory describing the properties of backpropagation-trained networks with respect

to function approximation or generalization. Lapedes [1987, 1988] has hypothe-

sized that networks approximate functions by using sums of a large number of

"bumps". This technique was used explicitly to compute nonlinear mappings in

[Saund, 1987].

If backpropagation finds a good solution for approximating some particular

function, then there is no reason to believe that the solution makes any special

use of the network structure. To solve a specific problem, it may often be possible

to use an extremely non-intuitive set of weights, and there are no constraints

on a gradient descent algorithm to impose a structure on the network. For this

reason, a backpropagation trained network may be difficult to interpret. The

experimenter may be unable to discover the "algorithm" which the network is

using to solve a particular problem, besides simply graphing the output surface for

individual weights. These output surfaces can often be helpful in understanding

network behavior (see, for example, [Lapedes and Farber, 1987, Lapedes and

Farber, 1988]), but for large networks with more than three layers the surfaces

may not be self-explanatory.
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There is one case in which backpropagation can be said to generalize in a

meaningful sense. This case involves a network "bottleneck". A bottleneck layer

is a layer within a feedforward network which has fewer units than the layers above

and below. This means that in order to compute its mapping, the network must

somehow compress the data representation in such a way that it fits through this

layer and can still be used for computations by the layers above. When a bot-

tleneck exists, empirical observation suggests that networks do indeed generalize

properly. We will discuss this idea further in section 1.4.

1.2.2 Hebbian Unsupervised Algorithms

Unsupervised algorithms typically are used for single-layer networks which have

only an input and output layer, with no hidden layers in-between. An early such

algorithm was proposed by [Hebb, 1949] as a model of the change in synaptic

weights between neurons in biological systems. Extensions to Hebb's original

model have been given by [Grossberg, 1971, Grossberg, 1976, Kohonen, 1982, Oja,

1982, Linsker, 1986a, Kohonen, 19881, among many others. Hebbian algorithms

modify the connection between two units in proportion to the cross-correlation of

the units' activities. A detailed discussion of this type of algorithm will be given

in chapter 2.

Unsupervised algorithms require some method to force different outputs to

learn different things. One approach to this problem is to have "competition"

between outputs for different functions. Competitive learning has been inves-

tigated by a number of authors, including [Von der Malsburg, 1973, Fukushima,

1975, Grossberg, 1976, Kohonen, 1982, Amari, 1983, Rumelhart and Zipser, 1985].

Although the basic Hebbian algorithms are understood (see, for instance, [Oja,

19821), the effects of winner-take-all and other forms of competitive interaction

have not been sufficiently analyzed.
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1.3 Multi-layer Unsupervised Learning

In order to train a multilayer network more efficiently, it would be useful to have

an algorithm for which the optimal weights for each layer were dependent only on

the layers below. It would then be possible to train the network "bottom-up" by

allowing the lowest layers to "mature" first, and then training the higher layers.

Such an algorithm would require training time which was only a linear function

of the number of layers, rather than exponential. These considerations lead us to

search for unsupervised algorithms for which the optimality principle relates only

to the weights at one layer, and is thus independent of the final outputs of the

network and the other weights above.

Unsupervised learning may therefore give a dircct advantage in the scaling of

training time with network depth. In addition, an already trained network can

take advantage of its previous training to learn a slightly modified task without

retraining every level. This is in contrast to supervised algorithms such as back-

propagation for which all weights will change as soon as any output errors are

detected.

The structure of a multi-layer network trained by an unsupervised algorithm

at each layer may be interpretable, depending on the optimality criterion used for

training. This occurs because each layer is entirely dependent on the output of

the previous layer, so whatever task it is trained to perform by the learning algo-

rithm will be performed independently of the overall function which the network

computes. Each layer will perform a function entirely local to that particular

layer, and the function will be determined only by the training algorithm and the

inputs which it receives from previous layers. Therefore, the trained network will

implement a hierarchical processing system, in which each layer performs a certain

transform of the output of the previous layer. The transform performed is spec-

ified by the learning algorithm itself, and since we have specified the algorithm,

the function of each layer may be interpreted within this context.
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1.4 Data Compression as a Fundamental Prin-

ciple

Recently, it is becoming clear that the discovery of interesting hidden units and

generalization in a multilayer network is related to the ability of the network to

compress data [Baldi and Hornik, 1989]. For instance, if a three-layer network

has N inputs and N outputs, but M < N hidden units, then the M hidden units

must develop an encoding of the input which is appropriate for computing the

output. This problem has been called the "encoder" problem [Rumelhart et al.,

1986a]. If a supervised algorithm is used to train the network to approximate

the input at the output units (the identity mapping), then the hidden units must

represent as much of the information in the input as possible, in order for the last

laye," of weights to be able to reconstruct the input. If backpropagation finds an

acceptable solution, then it must involve a good coding at the hidden units.

Since there are fewer hidden units than input units, a "good" coding .depends

upon the hidden units' ability to exploit redundancies in the input data. However,

redundancies in the data probably represent what we would call "features", since

they could be groups of inputs which tend to occur together. If a single hidden unit

represents a large multi-dimensional component of the data, then it is clear that

that unit has captured some "significant" parameter of the input. This implies

that data compression caused by network bottlenecks may force hidden units to

represent significant features of the data.

To understand how this makes generalization possible, we start by assuming

that the response of a desired function f of multi-dimensional input actually de-

pends on a relatively small number of parameters of that input. If the dimension-

ality of a bottleneck layer is less than is needed to represent the input completely,

the outputs of the bottleneck layer must somehow choose a representation which

conveys the "useful" information for the desired function f to the higher layers.
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Presumably, this "useful" information represents some nonlinear subspace of the

input space RN, and hopefully this subspace represents the parameters useful for

computing f. The bottleneck has therefore provided a constraint on the gradient

descent which has forced it to train the network in a particular configuration. This

constraint means that components of the data which are not useful for computing

f are eliminated at the bottleneck layer. The network therefore generalizes in the

sense that components of the data which are unimportant for computation of f

are ignored. We can say that the data outside the test set is "projected" onto

the subspace spanned by the bottleneck outputs, so that if these outputs really

represent a set of parameters upon which the desired output depends, we would

expect to obtain the proper output even for data not in the training set.

The data compression principle can serve as a link between many different

types of algorithms. Linsker has proposed that a major function of Hebbian algo-

rithms is to maximize the information present in the output layer [Linsker, 1988b].

Backpropagation through a bottleneck may also attempt to maximize the useful

"information" at the bottleneck layer. One might expect that both algorithms

would lead to similar results, and in fact it can be proven mathematically that

the optimal information content is achieved by both types of algorithms for the

single-unit case [Baldi and Hornik, 1989]. For the multi-unit case, we will give an

example later which shows that in one case the unsupervised algorithm to be pre-

sented in this thesis achieves equivalent results to backpropagation through a bot-

tleneck. Other authors have taken advantage of this property of backpropagation

to design unsupervised learning algorithms by specifically training a three-layer

network through a bottleneck (referred to as self-supervised backpropagation)

[Ackley et al., 1985, Ballard, 1987. Cottrell et al., 1987]. The success of these

different algorithms may therefore be based upon the underlying principle of data

compression, and this principle may be very closely related to the properties of

feature detection and generalization.
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1.5 Our Optimality Principle

The optimality principle which we will choose to design the algorithm to be pre-

sented here is based upon the idea of finding an efficient coding for the data. In

order to do this, the algorithm must be able to find dependencies (correlations)

within the samples in the training set. These dependencies can then be exploited

to reduce the dimensionality of the data. By so doing, it is hoped that compo-

nents which represent noise or are not useful for computing a desired function

may be eliminated. In certain cases, this principle will correspond to maximiza-

tion of information, an idea proposed by Linsker as a basic organizing principle

for biological information processing [Linsker, 1988b]. Since a compact coding

represents the significant features of the data, by separating out these features we

hope that higher layers in a multi-layer network will be able to compute useful

functions. It is also hoped that the network will generalize, if indeed the features

which are discovered relate to significant parameters in the environment.

1.6 Goals of this Thesis

This thesis is divided into three major parts:

1. Linear Hebbian Networks and the Generalized Hebbian Algorithm

2. Extensions to Nonlinear Networks

3. Examples of Uses for Unsupervised Networks

The first part presents previous results on Hebbian algorithms and generalizes

them to the multiple-output case. This generalization provides an important new

algorithm which allows a network to discover an optimal set of outputs. Others

have conjectured that this is possible (see, for example, [Baldi and Hornik. 1989])

and our algorithm verifies this conjecture.
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The second part applies the results of Part 1 to the nonlinear case, and shows

that essentially the same algorithm can be used, although it can no longer be

proven to converge.

The third part shows examples of the use of unsupervised learning in several

domains. A linear network is used to process a textured image and segment it into

different textured regions. It is shown how presentation of random visual input

can lead to the development of "receptive fields" qualitatively similar to those of

certain primate visual cortical cells. A real digitized image is coded at a bit rate

of one-third of a bit per pixel. And we demonstrate how a simple stereo algorithm

can be learned which is capable of detecting depth edges in a random-dot stereo

image.
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Part I

Linear Networks

25



Chapter 2

Hebbian Algorithms

Hebbian Learning Algorithms are based upon the idea suggested by Hebb in 1949,

that an increase of synaptic strength between an input and an output neuron may

be related to the firing rates of the input and output [Hebb, 1949]. As a result,

synaptic strengths will increase fastest between pairs of neurons whose responses

are correlated, and the resulting increase in synaptic strength will lead to a further

increase in the correlation. Increasing the correlation in this manner may lead to

a useful pattern of synaptic strengths over a poprlation of neurons.

I

2.1 Learning Rules

2.1.1 Terminology

Measurements on the environment are represented as a zero-mean Gaussian ran-

dom vector x =< X,..., XN >T which has correlation matrix Q = R, = E[xxT].

("E[z]" is the expected value of the random variable z.) The output of a single

linear layer is the Gaussian random vector y =< yl . , yM > which is computed

from x by y = Cx where C = [ci] is an M x N matrix of "synaptic weights", and

27
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4j is the weight from input J to output i. The correlation matrix of y is

P = E[Cx(Cx)T I = E[CXXTCT] = CE[XXTICT = CQCT

2.1.2 Hebb Algorithm

The basic Hebbian algorithm in its usual form modifies weights by adding a small

increment proportional to the product between input and output. This can be

written as

cij(t + 1) = ci,(t) + -1xj(t)yi(t)

or, in matrix form

C(t + 1) = C(t) + _1y(t)XT(t) (2.1)

where -y is a coefficient which determines the learning rate. At a particular time

tj, we have

C = C(O) + - E y(t)x(t)
t=O

and as tj becomes large, the sum approaches t1E(yxT], so the expression ap-

proaches C(O) + tvyE[yxT].

If we have supervised learning, so that desired values are supplied for y, then

we assume that y is a deterministic function of x, so y = f(x). If f is linear, we

can write y = Lz, and

E[yxT ] = E[Lxx T ] = LE[xx T ] = LQ

so C approaches tl-tLQ. If x is white noise, then Q = I, and C becomes pro-

portional to L. This means that the weights will "learn" to compute the desired

linear function of the input. (If y can take on only the values {-1, 1}, then this

reduces to the perceptron learning algorithm [Rosenblatt, 1962].)

In contrast, for unsupervised learning, y is a time-varying function of x (since

it depends on the changing weight matrix), so equation 2.1 is difficult to solve. If
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we assume that -y is sufficiently small that C changes slowly relative to x, then

we can average equation 2.1 to get

C(t + 1) = C(t) + -C(t)E[xx T]

= C(t) + -yC(t)Q (2.2)

Under certain conditions on - (see [Ljung, 1977]), the convergence of C can be

approximately described by the differential equation

C = CQ (2.3)

which describes the evolution of the weights for large t. Equation 2.3 may be

solved to give:

C(t) = C(O)eQt. (2.4)

Since Q is a symmetric positive-definite matrix, we can write it as Q = TATT

where T is the matrix whose columns are the orthonormal eigenvectors {ej }, and

A is the diagonal matrix of eigenvalues A,. Expanding the matrix exponential as

a power series, and realizing that TTT = I, allows us to write eQt - TehiTT.

Therefore,

eAlt

eX2t
C(t) = C(O)T TT.

L ~ eANt

N

-C(O)Z&'Jex
tejeT

j=1

N

e Zet(C(O)ei )eT (2.5)

Now, divide and multiply by e , where A1 is the largest eigenvalue, to give:

N

C(t) = Al e_(A-")'(C(O)e)eT
2=1
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N

- (C(0)eiei + E /-''(C(O)ej)e
j=2

Clearly, this does not. :onverge, due to the exponential factor. However, if we

divide by a normalization factor in order to maintain the C so that the rows will

have finite norm, then this normalization must be proportional to e~lt.

Since A1 is he largest eigenvalue, the exponents within the sum axe all nega-

tive, and those terms will approach zero as t -- oo. Therefore, with the normal-

ization, we have

C --* C(0)ejef

and each row cj of C

Cj -+ (4(0)- ei)e, (2.6)

which is proportional to el. (If c(0) • ei = 0, this will not be true, but for now

assume c1(0) • ei 94 0.) Therefore all the rows of C will converge to the principal

eigenvector el.

This convergence procedure can also be described as minimization of an energy

function. If we define
N

E = - E E[y,] = -trace[ 1 1 y] = -trace[CQC T] (2.7)
n= 1

then

o = - (' E i : CnkQkCn)
,c n=1 19--- 1 1

-(E Qjlia + 1:QkjCik + 2Qjjit 3

E Qjtcl + E QkjCik
1=1 k=l

N

= -2 Z Qjcik (2.8)
k=(

= -2[CQ],j. (2.9)
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Equation 2.8 follows since Q is symmetric. Equation 2.9 shows that OE/a,9i is

proportional to the ii" element of the matrix CQ. To perform gradient descent,

we need to set

Scx OC - = 2[CQ]ij

which can be written in matrix form as

C CQ.

This is exactly equation 2.3 which gives the approximate change in C after a long

time, so we see that the Hebbian learning rule is performing gradient descent

on the energy function specified by equation 2.7. Again, we must impose some

restriction on the norm of the rows of C for the energy function to have a minimum

at all. If we do so, then the procedure always converges for any initial value of

the matrix C, since the energy surface has no local minima.

If we normalize so that the rows have norm 1, then this matrix has the in-

teresting property that it maximizes the variance of each output (over all other

matrices whose rows have norm 1). The output correlation is CQCT, and it can

be seen that every element of this matrix will be equal to eTQel = AleTel = A,.

For any other vector c, we write it in terms of the orthonormal eigenvectors of Q

as c = a cej. Then the variance of the output of that vector is

cTQc = 1: A.a = A,1 -(.j/Aj)a < A,

since if c is normalized, E = 1, and (Aj/Al) < 1 by definition.

The significance of this observation is that the Hebbian learning rule is at-

tempting to maximize the variance of each output independently. The energy

function is defined to be the negative of the sum of the output variances, so min-

imization of E will lead to maximization of the variance. Since there is only one

best solution, all the outputs will come to have the same synaptic weights from

the inputs. Therefore each output will compute the same function of the input.
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and the learning algorithm will choose the function which maximizes the total

output variance.

Linsker points out that finding the first eigenvector is equivalent to "Principal

Component Analysis" (PCA) [Linsker, 1988b]. The eigenvector of Q with largest

eigenvalue is the "principal component" of the data, so-defined because it has

the largest variance. Standard results in linear estimation theory show that if

the scalar output of this filter is used to estimate the input vector, then it will

minimize the mean-squared error in the estimate of the input. We consider this

idea in further detail in chapter 4 below.

2.1.3 Oja Algorithm

Oja has elegantly shown that a slight modification of the Hebbian learning rule is

capable of keeping the norm at 1 automatically, without the necessity for external

control of the normalization. [Oja, 1982]. His synaptic modification rule is

cij(t + 1) cij(t) + yYi(t)xj(t)
+1 ( [(t) +yy(t)X(t)2)1(2.10)

which can be written in matrix form as

C(t + 1) = F-1/2 (C(t) + 'y(t)XT(t)) (2.11)

r = diag[(C(t) + 7 y(t)xT(t))(C(t) + ry(t)XT(t))T]

where diagn is an operation which sets off-diagonal matrix entries to zero. Oja

proved that for -y small, equation 2.10 can be approximated by

cij(t + 1) = cii(t) + -Yyi(t)[xj(t) - yi(t)c1 j(t)] (2.12)

which has matrix form

C(t + 1) = C(t) + _yY(t)xT(t) - ydiag[yyTjC(t). (2.13)
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Writing y(t) = C(t)x(t) gives

C(t + 1) = C(t) + -YC(t)x(t)XT(t) - -ydiag[C(t)x(t)xT (t)C T (t)]C(t).

If we assume, as in section 2.1.2, that -f is sufficiently small that C changes slowly

compared to x, then we can take the average of both sides to give

C(t + 1) = C(t) + -yC(t)E[xz T ] - 'ydiag[C(t)E[xxT]CT (t)]C(t)

= C(t) + fC(t)Q - -diag[C(t)QCT (t)]C(t) (2.14)

which, under appropriate conditions, can be approximated by a differential equa-

tion

C = CQ - diag[CQCT]C (2.15)

Oja proves that for positive semidefinite matrices Q whose largest eigenvalue has

multiplicity one, this differential equation will always converge to a matrix each

of whose rows is the normalized principal eigenvector.

2.2 Other Hebbian Algorithms

Several authors have used variations of the basic Hebbian algorithm to train

unsupervised networks, often in the context of development of visual informa-

tion processing [Grossberg, 1976, Oja, 1982, Bienenstock et al., 1982, Kohonen,

1982, Barrow, 1987, Cottrell et al., 1987, Linsker,. 1988b] (among many others).

The differences between algorithms can often be reduced to differences in nor-

malization (most methods to keep weights from growing indefinitely will produce

the principal component of the data), or methods of lateral inhibition (which at-

tempt to force different outputs to compute different functions). For example, Oja

maintains the sum of the squares of the input weights near 1 (as do [Kohonen,

1982, Barrow, 1987, Kohonen, 1988]). Other authors maintain the sum of the in-

put weights to any output at a constant value [Von der Malsburg, 1973, Linsker.
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1986a]. Of course, this requires that all weights in the network be positive. Dy-

namic decay of weights is another possibility [Grossberg, 1976, Bienenstock et al.,

19821.

The success of these algorithms often depends upon the discovery of the prin-

cipal component of the data, since this component may represent some significant

and intuitive feature. (In the field of statistics, the principal component is often

considered to be a "generating variable" for the data which has special signifi-

cance.) Linsker points out that another reason for the significance of the principal

component is that it preserves the maximum amount of information about the in-

put which any scalar value can. He therefore claims that the Hebbian algorithms

attempt to perform "maximum information preservation" or "infomax" [Linsker,

1988b]. (Of course, his algorithm and the others mentioned only achieve this in

the single-output case.)

Given so many algorithms for finding the principal component, one is led to ask

whether it would be possible to learn the other components of the data, thereby

performing a more complete factor analysis. It is a well-known fact in linear al-

gebra and signal processing that if we must linearly approximate an N-valued

vector using M < N linear functions with minimal mean-squared error, then we

should choose those M functions to be a linear combination of the M eigenvec-

tors with largest eigenvalue. If M = I we find that the optimal representation

for the N-vector is its statistical principal component, which is found by the Heb-

bian algorithms. For M > 1 we need an algorithm which will find more of the

eigenvectors.

The major problem encountered by all workers who attempt to use Hebbian

algorithms is that there must be some mechanism for forcing different outputs to

converge to different functions. Usually, it is not required that these functions be

orthogonal, but simply that they be "different" (linearly independent, usually).

One method is to use a winner-take-all scheme in which only the output with
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largest activation has its weights modified for any given presentation [Kohonen,

1982, Barrow, 1987, Carpenter and Grossberg, 1988]. Another method is to use

lateral inhibition, in which the training of any particular output is weakened

proportionate to the strength of other outputs [Grossberg, 1976, Kohonen, 1988].

Different outputs can also be generated by allowing random variation in initial

parameters to cause a learning algorithm to "choose" one of several equally likely

possibilities [Linsker, 1986b, Kammen and Yuille, 1988].

Although it does not contribute to the representation of information, many

authors attempt to have topologically "nearby" outputs respond to similar com-

ponents of the input. This is usually accomplished by having some form of facili-

tation between nearby outputs [Von der Malsburg, 1973, Kohonen, 1982, Linsker,

1986c, Kohonen, 1988]. The biological motivation for this modification is that

neighboring cells in area VI of monkey visual cortex appear to respond to similar

bar orientations [Hubel and Wiesel, 19741. However, there is no theoretical reason

why such an organization would be useful, and authors do not justify it. Kohonen

[1982] perhaps goes furthest in generating a network whose sole purpose is to have

output vectors converge to a representation of the output unit's physical point in

space. He accomplishes this using a winner-take-all algorithm which ensures that

different outputs converge to different vectors, but the nearest neighbors of the

winning unit are also allowed to train. Of course, the choice of nearest neighbor

topology for training determines the topology of the output map.



Chapter 3

The Generalized Hebbian

Learning Algorithm

3.1 Optimality Principle

We choose an optinality principle based on the ability to linearly reconstruct the

inputs to the network from the outputs with minimum mean-squared error. If the

network is linear and the input distribution is Gaussian with Gaussian noise added,

then this maximizes the information at the outputs as suggested by Linsker's

"Infomax" principle [Linsker, 1988b]. For general input distributions, however,

this will not maximize the information. However, this choice of optimality does

allow us to construct a convenient algorithm for training single-layer networks.

Formally, for the case M < N, we wish to estimate an N-vector x given the

value of the M-vector y = Cx for an MxN matrix C (as always, x is zero mean).

We will choose the estimate ! which minimizes the expected mean squared error

(MSE) E[Ijx - 1-f]. It can be shown that the best estimate is given by

= yR-y

where Rr is the cross-correlation matrix of the input and output. Define the

36
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error vector E = x - 1 which has correlation matrix

R = Q ---
Re= Q- RxyRR RT,

where Q = E[xxT] is the NxN correlation matrix of x. We can write

E[Ijx- fI] = trace[R,]

Since y = Cx, we have

RX = E[xyT] = E[xxT CT] = QCT

RYY = CQCT

QCT(CQCT)-ly

Re = Q - QCT(CQCT)-ICQ

Now, we would like to pick C which allows us to get the smallest possible error

using this procedure. Since C has rank M, and the rows of C have norm 1, it can

be shown that the error is minimized if CQCT = AM, where AM is the M x M

diagonal matrix of the largest M eigenvalues of Q. If we write Q = TATT where T

is the matrix of orthonormal eigenvectors, then the error is minimized when C is

equal to the first M rows of T (assuming the rows of T are ordered by decreasing

eigenvalue), or any linear combination of them.

The Oja algorithm described above is capable of finding only the principal

eigenvector. If we wish to train a network with multiple outputs according to our

optimality principle, then we must be able to find the other eigenvectors as well.

In this chapter we describe a new learning algorithm which generalizes the Oja

algorithm. We prove that it forces different outputs to converge to uncorrelated

random variables, and thus finds the first M eigenvectors in eigenvalue order. It

therefore computes the Karhunen-Lo~ve Transform (KLT) of the input, or the

singular value decomposition (SVD) of the input correlation matrix Q. If the

number of outputs is the same as the number of inputs, then the output will be
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a "whitened" version of the input. This algorithm therefore supplies the miss-

ing generalization to multi-output networks. Since it is capable of finding the

eigenvectors of a large dimensional distribution without prior computation of the

correlation matrix, it is also a useful tool for the analysis of real-world stochastic

data. (Other algorithms with this ability have been proposed outside the field of

neural networks, and a summary can be found in [Oja, 1983].)

3.2 Derivation

In section 2.1.2 we saw that for any initial weight vector, a Hebbian training

algorithm would cause the weights to converge to the principal eigenvector of

the input correlation matrix, so long as the norm of the vector is maintained

at 1. In section 2.1.3 we saw that the Oja algorithm maintains the norm at 1

automatically while doing this. A careful look at equation 2.5 will show that if

any row of the initial weight'vector C(0) is orthogonal to the principal eigenvector,

then that row will converge to the eigenvector with next highest eigenvalue. (To

show this, divide and multiply by e\2t.) If a row is orthogonal to both the first

and second eigenvectors, then it will converge to the third, and so on. Therefore,

if during training we artificially maintain the different weight vectors (rows of C)

orthogonal to each other, then when one converges to the principal eigenvector,

the next will be forced to converge to the next eigenvector, and so on. We see that

each row will converge to a different eigenvector of the input correlation matrix.

The output correlation will thus approach CQCT = A, and we will have obtained

a whitening filter.

We thus need to find a modification rule to maintain the rows of C orthogonal

to each other, in addition to maintaining the rows normalized and maximizing

their variance. In order to obtain such a rule, we can perform a Gram-Schmidt

orthogonalization on C after each training iteration. The Gram-Schmidt process
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can be written as:

1. Pick an arbitrary unit-length co

2. For each i, set ci +- c4- - E<,(cj • ck)ck

3. For each i, normalize cj to length 1.

In matrix form, step (2) can be written

C +- C - lower[CCT]C (3.1)

where lower(I is the operator which sets all matrix values on or above the diagonal

to zero.

We now combine the three modification rules:

(1) find the principal eigenvector

(2) normalize to length 1

(3) orthogonalize (3.1)

If this is done explicitly at every iteration step, then it can be proven that the

matrix C will converge to the matrix of eigenvectors [Oja, 1983]. The algorithm

which we present here is based upon a linearized combination of these three steps.

Other non-network methods for performing the same computation have been de-

scribed in [Oja and Karhunen, 1980, Karhunen and Oja, 1982, Kuusela and Oja,

1982, Oja, 1983, Karhunen, 1984, Oja and Karhunen, 1985, Karhunen, 1985].

We now propose the "Generalized Hebbian Algorithm" which has a weight

update rule given by:

cij(t+1)=cj(t)+ fy ((t)X(t)-y(t) - Ckj(t)Yk(t)) (3.2)

and can be written in matrix form as

C(t + 1) = C(t) + -/ (y(t)xT(t) - LT[y(t)y T (t)]C(t)) (3.3)

where x(t) is the sample input at time t, y(t) = C(t)x(t), y is a time-varying

learning rate constant, and LT[] is an operator which sets all entries above the
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diagonal of its matrix argument to zero. We will prove later that this equation

causes C to converge to the matrix of the first few eigenvectors of the correlation

matrix of x. This is done without the necessity for explicitly computing the NxN

correlation matrix Q, which can be difficult if N is large.

If we assume that C changes slowly relative to x and y, then we can take the

expected value of both sides to get a matrix iteration equation

C +- C + -y(CQ - LT[CQC T ]C) (3.4)

which describes an iterative method for finding the first few eigenvectors of any

matrix Q.

3.3 Proof of Convergence

We must show that the algorithm

C(t + 1) = C(t) + Y(t) (y(t)ZT(t) - LT[y(t)YT(t)]C(t)) (3.5)

converges to the matrix T whose rows are the first M eigenvectors of Q = E[xxT]

in descending eigen-value order. C is an M x N matrix, y(t) = C(t)x(t), LT[.]

sets all entries of its matrix argument which are above the diagonal to zero, x is

a white bounded vector stationary stochastic process with autocorrelation matrix

Q, and {ek} is the set of eigenvectors of Q indexed by k in order of descending

eigenvalue {Ak}.

We will write

C(t + 1) = C(t) + (t)h(C(t), x(t)) (3.6)

where h(C(t),x(t)) - y(t)xT(t) - LT[y(t)yT(t)]C(t). We now apply theorem 1 of

[Ljung, 1977] which states (in our notation):

If

(1) -f(t) is a sequence of positive real numbers such that -y(t) --* 0. Ft -(t)P <
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for some p, and Ft -f(t) = oo;

(2) x(t) is bounded with probability 1;

(3) h(C, x) is continuously differentiable in C and x and its derivative is bounded

in time;

(4) h(C) - lmt._. E,[h(C, x)] exists for each C;

(5) S is a locally asymptotically stable (Lyapunov sense) set for the differential

equation

CA(C)

with domain of attraction D{S}, and

(6) C(t) enters some compact subset A C D{S} infinitely often w.p.1;

Then with probability one,

lim C(t) E S.

where C(t) is given by equation 3.6. (A similar reault is found in theorem 2.4.1

of Kushner and Clark [1978] .)

'To satisfy the requirements of the theorem, we let -I(t) = l/t and, h(C) =

limt- E[h(C, x)] = CQ - LT[CQCT ]C. We now show that the domain of at-

traction D{S} for the solution for which the rows of C are the first M orthonormal

eigenvectors includes all matrices with bounded entries. We will "hard-limit" the

entries of C so that their magnitudes remain below a certain threshold a, and thus

within a compact region of RNM. We will thereby show that C converges to the

matrix of eigenvectors T for any choice of initial matrix C(0).

We seek stable points of the differential equation

C = CQ - LT[CQCT ]C (3.7)

Fixed points exist for all C whose rows are permutations of any set of eigenvectors

of Q. We will show that-the domain of attraction of the solution given by C = T

whose rows are the first M eigenvectors in descending eigenvalue order, includes

all matrices C with bounded entry magnitudes.
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Oja showed that the first row of C will converge to the principal eigenvector

with probability 1. (This is not the only fixed point, but it is the only asymp-

totically stable one.) We will use induction to show that if the first i - 1 rows

converge to the first i - 1 eigenvectors, then the it" row will converge to the i/

eigenvector. We assume that Q has N distinct strictly positive eigenvalues with

corresponding orthonormal eigenvectors. (The case of repeated or zero eigenvalues

is a straightforward generalization.)

The first row of C is described by the differential equation

= cTQ - (cQCi, T

which is equivalent to equation 7 of [Oja, 1982]. Oja showed that this equation

forces cl to converge with probability 1 to ±el, the normalized principal eigen-

vector of Q.

At any time t, for k < i write

Ck(t) = ek + Ck(t)fk(t)

where ek is the kth eigenvector (or its negative), fk is a time-varying unit-length

vector, and Ck(t) is a scalar. We assume for the induction step that for k < i,

EAk(t) --+ 0 as t -+ oo. We must show that if this is true then ci(t) --+ ej as t -- oc.

Each row of equation 3.7 can be written

, = Qci - (c,Qck)ck
k<i

Substituting Ck = ek + Ekfk gives

C = (CTQC,)C, _(C,7Qek)eA; - 0(E) + o(c2) (3.8)
k~i

where Qek = Akek, and e indicates a term converging to zero at least as fast as

the slowest row for k < i. Expanding c, in terms of the entire orthonormal set of
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eigenvectors gives
N

Ci = akek
k=O

where ak = cie k. Inserting this expression gives the following equalities:

N

(41 Qci)ci = i1
1=0

-"AltI E Ckek
1= 0 ( k=0

N

QCi = ZAkkek
k=0

N

Qcj - ~jAk(C~ek)ek E AkCikek - EZ kie
k<i k=0 k<i

E Akkek

k>i

We now assume t is large so we can ignore terms of order e, and we write

N

k=O

= ~~ Ak)kek - +t Otla k
k>i 1=0 1 Cke

If we multiply each side by e4 for each k, the orthonormality of the {ek} implies

-k -k1= oAlai if k < i (39)

ak(Ak - =0 AI) if k >i

We can use equation 3.9 to study the recursion relation on the ak's. We

examine three cases: k < i, k > i, and k = i.
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Since Q is positive definite, all the eigenvalues Ak are positive, so the term

"r 0 ka2 is always greater than zero. Therefore, for k < i we have

Ck = -rak

where 77 is strictly positive. This expression will converge to zero for any initial

value of ak.

When k > i, define Ok = ak/ai. (Assume that ai # 0, which is true with

probability one for randomly chosen initial weights C(O).) We have

k= (1/ai)(&-0k)

N N

-(1/a,) akA,-~Aa)-Okai(Aj Al,~
[a 1=0 1=0

- Ok(k -A )

Since the eigenvalues are numbered in decreasing order, Ai is the largest eigenvalue

in {A,.., AN}, A > Ak for all k > i, and we see that Ok --+ 0 for k > i.

Next, we examine the behavior of ai (case k = i). This is described by

N
a, =)

1=0

= ad(Ai - Aia? -Z1:Aa2)

But we know that ak --+ 0 for k < i. We therefore drop terms in ak for k < i,

which gives

a, = ai(A - Aja? -Z:Ala2)
I>i

= ai(Ai - Aia? - a,A1I)
l>i

But Ok --+ 0 for k > i, so the last term above approaches zero, and we therefore

drop it as well, giving

a, = Mai - a )



3.3. PROOF OF CONVERGENCE 45

To show that this converges, note that

is a Lyapunov function, since

= 4A(a a - aj)(aj - a ) < 0

and V has a minimum at a, = ±1. Therefore, ai --* ±1 as t --- oo. Since Ok -+ 0

for k > i, we also have al - 0 for k > i. Thus for large t, the only significant a is

aj, so ci will converge to ±ej, as desired. This completes the induction step and

proves that the differential equation 3.7 converges to the matrix T of eigenvectors

of Q. The domain of attraction of T includes all matrices with bounded weights.

Choose A to be the compact region in RNM given by the set of matrices

C with entry magnitudes Kcjj _5 a for a a fixed positive parameter. Clearly,

A C D{S}. Choose a sufficiently large that T E A. Choose the elements of

C(0) so that C(0) E A. If IIC(t)II - max, IIC(t)zlI/[zI remains bounded, then

there exists a value of a such that C(t) E A infinitely often w.p.1. (To ensure

that IIC(t)I is in fact bounded, we can "hard limit" its entries to be less than

or equal to a. This does not affect convergence of the algorithm (w.p.1) so long

as a is sufficiently large. Convergence of such constrained systems is discussed

in chapter 5 of [Kushner and Clark, 19781.) Alternatively, it can be shown that

for IIC(t)II sufficiently large, IIC(t + 1)11 < IIC(t)II for any input x(t), and C(t)

therefore remains within a (large) bounded region of RNM

We have now satisified all the conditions of Ljung's [1977] theorem. This

proves that, under the assumptions given above, (3.5) will cause C to converge

with probability one to the matrix T whose rows are the first M eigenvectors in

descending eigenvalue order.

Note that theorem 2.3.1 of Kushner and Clark [1978] implies that the averaged

form of the algorithm, given by

C(t + 1) = C(t) + C(t)Q - LT[C(t)QCT (t)]C(t)
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1. yl y2 Max Var[y] *

First row converges to Principal Eigenvector.

X1 X2 X32. y, Y22. - cly 1 removes this component from input.

X1  X2 X3

3. y, y2 Max Var[y]

+ Second row converges to principal eigenvector
of modified input, which is the second eigen-

£1 X2 X3 vector.

Figure 3.1: Schematic illustration of the operation of the Generalized Hebbian
Algorithm.

will also cause C to converge with probability 1 to the matrix of eigenvectors.

3.4 Network Interpretation

To help understand the operation of the algorithm, we rewrite (3.2) as

LAc(t)-= y(t)y1 (t) (xi(t) - ECkjt)Yk(t)) - y(t)Y,'(t)4i1(t) (3.10)

In this form, we see that the algorithm is equivalent to performing the Oja [1982]

learning rule (2.10) using a modified version of the input given by

X'(t) = x(t) - E ck(t)yk(t) (3.11)

or, in matrix form

X =t X (t) - EZCk(t)Yk (t)
k<i

where ck is the kth row of the matrix C. The modified input which trains output i

is formed by subtracting the components Ck(t) which contributed to the previous
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Figure 3.2: Network implementation of the Generalized Hebbian Algorithm.

outputs yk(t). If the first i - 1 outputs respond to the first i - 1 eigenvectors, then

the ith output "sees" an input from which those eigenvectors have been removed.

The principal component of the modified input is now the ith eigenvector of the

original input. When the Oja algorithm is applied to the modified input, it causes

the ith output to learn the i t h eigenvector, as desired. (This method of finding

successive eigenvectors is similar to a technique known as "Hotellings's Deflation"

[Kreyszig, 1988].) This technique is known to be numerically poor, as errors tend

to accumulate with the computation of successive eigenvectors. Nevertheless, it

is useful for finding the first few eigenvectors of large-dimensional data, and it is

often used in Statistics.

Equation 3.10 shows how we can implement the algorithm using only local

operations. This ability is important for training neural networks using parallel
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hardware. We can compute the outputs in order for each training presentation,

and subtract the components Ck(t)yk(t) progressively from the input as we go.

This corresponds to "using up" some of the input "energy" as we train each of

the outputs. (See figure 3.1.) A local synapse-like structure which can perform

this operation is shown in figure 3.2. A given input x, is connected to several

outputs. As each output y, is activated, it inhibits the input unit x, by an amount

proportional to the output activation. (The weights for forward propagation and

reciprocal inhibition must be maintained equal and be modified together.) If the

outputs learn in sequence, then each subsequent output sees an attenuated input.

This leads to training according to (3.10) which is performed using only local

"synaptic" operations. The fact that such a local implementation exists for this

algorithm distinguishes it from other algorithms for computing the Karhunen-

Loive transform and contributes to its importance for training neural networks.

3.5 Self-Supervised Back-Propagation

Several authors have experimented with the technique of Self-supervised Back-

propagation (SSBP), also known as the "encoder" problem [Ballard, 1987, Cot-

trell et al., 1987]. This algorithm seems to have optimal data coding properties

similar to those of the algorithm presented here.

In linear SSBP, a three-layer network is trained to perform the identity map-

ping, yet the number of hidden units in the middle layer is set to be fewer than

the number of inputs. The hidden units must therefore discover an efficient en-

coding of the input data. Since efficient coding is also the goal for the generalized

Hebbian algorithm, we would expect both algorithms to produce similar results.

Bourlard and Kamp [1987] have shown that a set of vectors which is a linear

combination of the eigenvectors gives the optimal set of hidden units of such a

network (according to our optimality principle). Baldi and Hornik [1988] proved



3.5. SELF-SUPERVISED BACK-PROPAGATION 49

that backpropagation will always converge to such a solution. There are many pos-

sible sets of weights with this property however, and SSBP will choose one which

is based on the initial random choice of weights. In general, the outputs will not

be uncorrelated, and the net will not be a "whitening filter". The Generalized

Hebbian Algorithm (GHA) finds the unique set of weights which is both optimal

for encoding and gives uncorrelated outputs. So in the linear case, SSBP and the

GHA converge to almost equivalent but not identical solutions. We will now give

a heuristic argument to show that the equations describing the two learning rules

are similar.

Define a three-layer linear network of N input units x, M hidden units y, and N

output units i which we want to approximate x. The weight matrices are W and

W2, so that y = Wjx and 1 = W2y. We train the network using backpropagation

and error function E[(x - )T(x- ). Then, using the notation of Rumelh,,:t

et. al. (1986a) , we adapt the weights at each layer using AWl = v1 1xT and

AW 2 = v2 2yT where 62 = x - ; and 8t = WjT652. We then have:

AW2 = V2(x_ - )yT

= V2(x- Wy)yT

= V2 (XYT_ W~ )

zwi = - yyTwf) (3.12)

This is similar to (3.3), except that we do not force the matrix yyT to be lower

triangular, and WT is not the matrix used to generate y from x. The following

discussion will show that W2 and W are related so that it is reasonable to assume

(3.12) is almost equivalent to (3.3).

Assume that V2 < vj, so that W 2 converges much slower than W1. We then

have:

zAW, = VIWT6 X

= V w V(x - )x
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= - W2 Wx)x T

= _ WTW 2W,)X T

= v1(W 2T-WW 2W,)QX

Since Q is positive definite, it can be shown that this equation will cause WTW 2W 1

to approach W2 (for vi decreasing to 0 as 1/t). If we substitute W T - WTW 2 W 1

into (3.12), we see that this is simila, to (3.3) except for the lack of the LTD

operator and the inclusion of the positive definite scaling matrix WTW 2 .

Although the above discussion is not a rigorous proof, it gives us some insight

into the reason for the close relationship between GHA and SSBP. The two algo-

rithms are related both by the results they achieve and by their mechanisms of

action. This means that our understanding of the convergence properties of GHA

can be used to analyze certain backpropagation networks as well.

The major difference in function between GHA and SSBP is that GHA pro-

duces the first M eigenvectors themselves in eigenvalue order, while SSBP pro-

duces a linear combination of the first M eigenvectors. This difference can be

important. Several authors have noted that SSBP tends to produce hidden units

which have approximately equal variance [Cottrell et al., 1987, Baldi and Hornik,

1989]. The variances do not descend by eigenvalue as they do for the KLT. The

solution found is not unique, and although it spans the first few eigenvectors, the

actual matrix which is learned cannot be predicted. In addition, the hidden units

are not uncorrelated.

These factors seriously reduce the usefulness of SSBP-trained hidden units

for data coding applications. Because the hidden units all have approximately

equal variance, bits must be allocated evenly among them, and noise cannot be

eliminated by removing the units with lowest variance. If the network is designed

with too many hidden units (in the sense of Brailovsky [1983a,b,1985]) then the

additional error introduced is spread evenly throughout the units and cannot be
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easily detected or removed by looking at the signal to noise ratio of the individual

units. Cottrell et. a. [19871 point out that if channel errors affect certain units

more than others, then it may be an advantage to distribute the information evenly

so that high-variance channels are not corrupted excessively. If multiplicative noise

is present in different amounts on different channels, then indeed this will be true.

For additive noise, however, the KLT allows much easier reconstruction of the

original "clean" signal, since the signal-to-noise ratio is maximized.

Ballard [1987] proposes using SSBP to train each layer of a multi-layer nonlin-

ear network. The layers are interconnected such that the hidden units of one layer

connect to both the inputs and outputs of the layer above, and this allows errors

to be propagated back down through the network. He has not yet performed an

extensive theoretical analysis of either SSBP or his coupling scheme, although

the success of his method clearly depends upon the ability of SSBP to find good

codings.

[Cottrell et al., 1987] used SSBP to train one layer of a linear network on gray-

scale image data. Since the hidden layer determines a good coding' of the input

(in the linear case, it is the optimal coding [Bourlard and Kamp, 1988, Baldi and

Hornik, 1989]), they used this coding to perform image compression at rates up

to .625 bits per pixel. The hidden units can be considered to represent features of

the input data, and these features are extracted, quantized, and then recombined

to produce estimates of the original image. The authors mention that the network

is performing the "Principal Components Transform" (SVD) of the input data,

and in so doing discovers the same solution as is often used in standard image

coding applications.

Comparison of equation 3.12 (page 49) with equation 3 of [Oja, 1982] makes

it clear that for the single hidden unit case, the linear SSBP algorithm is exactly

equivalent to the Oja algorithm. For multiple hidden units, [Baldi and Hornik,

19891 predict that some Hebbian algorithm probably exists which achieves the



52 CHAPTER 3. GENERALIZED HEBBIAN ALGORITHM

same results as SSBP. The Generalized Hebbian Algorithm is, in fact, the algo-

rithm they predict. It determines a unique solution which is (with probability

one) independent of the initial choice of weights.

3.6 Rate of Convergence

Assume that the first output converges to the first eigenvector in a time tj. Note

that t1 will be approximately independent of the number of inputs, since the

weight from each input adapts according to

Acj = 1'(yxj - cy 2 )

and the only effect of increasing the number of inputs is through y. The depen-

dence on the number of outputs should be approximately linear (Mt 1), since the

second output cannot mature properly until after the first one has. It may be

worse, however, since the effect of subtracting eigenvectors from the input is to

decrease the variance of the input and this will slow learning for the outputs which

mature later. This effect is compensated for by the fact that the second output

tends to "track" the first while it is still evolving. Empirically, it seems that the

two effects combine to produce training time which is approximately linear in the

number of outputs.

3.7 Noise

If uncorrelated noise with energy a is added to the input vector, we can write

the new input correlation as Q + 'I where aI is the diagonal noise correlation

matrix. The eigenvectors of Q + aI are the same as the eigenvectors of Q, since if

CQCT = A, then C(Q+ I)CT = A + oCCT = A + aI which is diagonal. We thus

have (Q + aI)CT = CT(A + cI) so the new eigenvalues are given by Ai + a, while

the eigenvectors are the same and their ordering by eigenvalue remains the same.
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The Generalized Hebbian algorithm will thus cause the network to achieve exactly

the same weights, even though the outputs will be linearly affected by the noise.

The signal to noise ratio for output i is Xila. The higher the correlation between

inputs, the larger the initial eigenvalues will be, and thus the effect of adding noise

of power or to the outputs will be relatively less. In this sense, the network will

attempt to reject the noise by maximizing the signal to noise ratio (since the noise

variance at the outputs is constant, maximizing the output variance corresponds

to maximizing the signal variance).

An important point which is often overlooked in this situation is that, contrary

to the noise-free situation, the addition of more outputs in the presence of noise can

actually decrease the accuracy of computations based on the ouputs [Brailovsky,

1985, Brailovsky, 19871. In order to avoid this problem and select only significant

outputs, we must either know the noise variance in advance, or we must rely on

subsequent processing to eliminate unreliable outputs (if, for instance, they did not

correlate with any useful information). Linsker points out that the eigenvectors

do not generate the maximal information which can be obtained when noise is

present, and that in fact some redundancy in the output data can help to eliminate

noise and improve the information content [Linsker, 1988b, Linsker, 1988a].



Chapter 4

The Singular Value

Decomposition

After a network has been trained according to the procedure described in chapter

3, the outputs of the network will be uncorrelated with each other. This is why we

describe the network as computing a "whitening" filter - it has found a linear filter

which transforms the environmental colored noise into its principal uncotrelated

components. We can also describe the network as computing the Singular Value

Decomposition (SVD) of the input correlation. This decomposition is important

for whitening, data compression, and the discovery of significant features. It is

a well-known and thoroughly analyzed technique used in the fields of signal pro-

cessing and statistics (where it is called Factor Analysis or Principal Components

Analysis (PCA)). In many texts, the term "Karhunen-Loeve transform" (KLT) is

used to refer to the output of the whitening filter specified by the SVD.

4.1 Matched Filters

The singular value decomposition has an interesting interpretation when the input

is generated by a fixed vector in random noise. It turns out that the first pr;nripal

.54
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component will be a matched filter for the signal. To see this, let the noise vector

be n with correlation acI. Then we have

x(t) = g+n(t)

Q = ggT +E[nnT]=ggT +±7 2 I

Qg = ggrg + a.g = g(llgll + a2)

so clearly g is an eigenvector of Q with eigenvalue IIgl + o.2. If e is any other

eigenvector orthogonal to g, then gTe = 0 and Qe = ggTe + ca2e = a2 e. So all

other eigenvectors have eigenvalue a 2 < 11giI ± o.2. Therefore, g is the principal

component of the data, and the Hebbian learning algorithm will find a matched

filter for this vector.

In the slightly more complicated case of multiple random signals summed

together, each eigenvector will converge to a matched filter for one of the input

patterns.

Formally, let the input be

M
x = givi

i=1
where v is a vector of independent zero-mean scalar Gaussian random variables

with correlation R,, (which is diagonal), and {gi} is a set of fixed orthonormal

vectors. Then, since the vi are independent, we have

M
Q = Ygig i E[v3]

s=1

M
=TO- (4.1)

s=1

(4.2)

where oa is the variance of vi. Multiplying through by g, gives

M

Qgn = Zgigifg,
i=1
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and since the gi are assumed to be orthonormal, we have

Qg. = g.g, .1 -- 

This shows that gn is an eigenvector of Q with eigenvalue a2. Therefore, the

extended Hebbian algorithm will converge to a matrix of M different "matched

filters" for the different fixed patterns, and the vectors will be ordered by their

average power JIjgI2an2. For this very simple case, the algorithm allows us to

separate out the different components of the input signal, without having to know

what these components are in advance.

To see this another way, write G =< gl,...,gM > whose columns are the

orthonormal vectors g. Then Q = GRGT, whose eigenvector matrix is simply

given by GT. Therefore, the generalized Hebbian algorithm gives C -+ GT, so the

output of the trained network is y = CGv = GTGv = v, and we have recovered

the original generating vector v.

4.2 Linear Estimation

Often, when interpreting the real world, a system will need to solve the inverse

problem of estimating some parameter of the world from a complex and inaccurate

series of measurements. The parameter could be something as simple as the

average number of true bits in a data stream, or something as complicated as the

probability that a cat is present in a visual image. We model the measurements

as the operation of a multivalued (nonlinear) probabilistic function upon the true

value of the desired parameter. The fact that the function is probabilistic means

that it will not always give the same output for the same values of the input. The

linear estimation problem is to find a linear filter which takes the measurement

as input and produces an estimate of the parameter which minimizes some cost

function.
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4.2.1 Finding the Optimal Estimator

Standard results in linear algebra give the minimal mean-squared error estimator

by:

= R,Q - lx (4.3)

Stone [Stone, 1986] has shown that a single level of the familiar backpropagation

rule [Rumelhart et al., 1986a] will converge to precisely this filter. This is equiv-

alent to the Widrow-Hoff or LMS algorithm which has been extensively analyzed

[Widrow and Hoff, 1960, Widrow et al., 1976, Widrow and Walach, 1984]. The

learning in this case is supervised, since we must know the true value of r7 during

training so that the system can correct its errors. The learning rule is given by

p i(t + 1) = P(t) + 'y[t7i(t) -

where P = [pij] is the weight matrix, 77 is the actual parameter value, and i = Px.

This equation has matrix form

P(t + 1) = P(t) + -Y[t(t) - P(t)X(t)]x T (t) (4.4)

referred to as the "Delta rule" or the "Widrow-Hoff rule". If -y is small, this can

be averaged to give

P(t + 1) = P(t) + 7[R,. - P(t)Q]

whose convergence can be approximately described by the differential equation

[Ljung, 1977]

P=-PQ + R,-,

This equation can be shown to converge to RTQ-'x, since

V = trace[(P - R7xQ-')(P - R,,Q-)T]

is a Lyapunov function if Q is positive definite and invertible.
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Note that the Delta rule is an extension to continuous variables of the Percep-

tron learning rule [Rosenblatt, 1962J. If we restrict 1r' to the values 0 and 1, and

let H1 be an operator such that Hx = thresh[Px] (thresh is a threshold function

operatirng on each element of Px so that if an element is negative it is set to 0,

and if an element is positive it is set to 1), then the equation

P(t + 1) = P(t) + -t[2J'(t) - II(t)x(t)]XT (t)

is exactly the Perceptron learning rule.

Note that the Delta rule, since it is a supervised algorithm, is able to reject

"noise" in its input. In fact, it finds the linear optimalestimator (minimal mean-

squared error) of the intended data, independent of whether or not noise has been

added.

4.2.2 Using Whitened Input

If we use the generalized Hebbian algorithm to learn a whitening filter C, then we

can apply the Delta learning rule to the output y = Cx. We then obtain a filter

P = Rt7y2'

where A. is the (diagonal) autocorrelation matrix of the whitened output y. Sub-

stituting A,, = CQCT gives

P = R1 CQ-iCT = PQ-lCT.

The optimal estimate is thus

} = Py = PCx= RxQ -1

which is exactly the optimal estimate of 17 based on measurement of x directly, if

CTC = I. However, C is an MxN matrix, so CTC has rank M < N. This means

that we have lost some of the data. The SVD has preserved as much as possible.
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but we do not know whether the network as a whole is performing as well as it

could. An advantage to using a two-layer net in this way is that training the top

layer using LMS may be faster, since M < N so there are fewer outputs, and

these outputs are uncorrelated.

4.2.3 Choosing the number of Outputs

The estimation error for approximating the original input is related to the sum

of the lowest N - M eigenvalues whose eigenvectors are not represented at the

hidden layer. Therefore, we can choose the width of the hidden layer by comput-

ing the variance of the outputs and discarding those whose variance falls below a

certain threshold. In fact, if there is noise present at the inputs, then estimation

is improved by discarding outputs whose variance is less than the noise variance

[Brailovsky, 1985]. Noise effectively sets an absolute limit on the approximation

ability of the network. The fact that the outputs are ordered by decreasing eigen-

value (variance) is very convenient when we are trying to compute just enough

outputs for a particular task, for we can allow the,first few outputs to converge,

and stop training new ones as soon as the variance falls below a chosen threshold.

In this way, we can build up the network to achieve any desired level of accuracy,

without having to train the full-sized network initially. Orthogonality of the out-

puts means that training a new output will not require retraining of the previous

ones. Note that this is not true for Self-supervised Backpropagation and other

unsupervised algorithms.

4.2.4 Other Fields

The use of whitening filters is common in several fields outside neural networks.

For signal processing, the Karhunen-Loeve expansion is a standard data compres-

sion technique. It is commonly used in image processing to compress the data

in blocks of an input image [Lim, 1988]. Each square block is coded according
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to a small number of linear basis vectors, and the coefficients are quantized for

transmission or storage. Since the KLT is usually assumed to order the eigen-

vectors by decreasing eigenvalue, optimal quantization and transmission can be

achieved by assigning bits to each coefficient in proportion to the log of its eigen-

value (variance). In theory, the optimal coding is achieved if the KLT is computed

independently for each image that is to be transmitted. In practice, it has been

found that most images contain very similar eigenvectors, and that these do not

need to be recomputed each time. In particular, it can be shown that the Discrete

Cosine Transform (DCT) of the image is equal to the KLT under very reasonable

assumptions about local correlations [Ahmed et al., 1974].

In other signal processing applications, the KLT is used for either data coding

or noise reduction. In the field of Statistics, the KLT is equivalent to the technique

of Principal Component Analysis (PCA) [Watanabe, 1965]. PCA can be used

either to rotate a set of data coordinates into an orthogonal system, or it can

be used to select the optimal set of nonlinear basis functions to predict a desired

value (Factor Analysis). The use of PCA assumes that the world can be described

by a set of independent generating parameters, and that these parameters will be

useful for prediction if they can be discovered. Components of the data with high

variance represent "real" statistics of the data, and can be related to values which

we might want to predict.
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Nonlinear Networks
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Chapter 5

Optimality in the Nonlinear Case

Most types of layered neural network involve some form of nonlinear processing

between each level. The nonlinear processing allows the network to compute non-

linear functions, although there has not yet been a clear exposition of precisely

which functions can and cannot be represented as multilayer networks. In addi-

tion, there is no foolproof method for training nonlinear networks to accomplish

any particular task. The familiar backpropagation algorithm [Rumelhart et al.,

1986a] is not guaranteed to converge for nonlinear networks, and no other general

algorithm has been proposed. Learning algorithms abound for special cases, but

very few of these have been proven to converge even for a limited range of inputs.

5.1 Nonlinear Optimality

In general, training an unsupervised network which contains nonlinear functions

is very difficult. Because of the large (infinite-dimensional) space of possible func-

tions, it is important to have detailed knowledge of which functions are likely to

be useful in order to design an efficient network algorithm.

The network structure we consider is a linear layer represented by a matrix C
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(which is perhaps an interior layer of a larger network) followed by node nonlin-

earities s(yi), followed by another linear layer (perhaps followed by more layers).

We assume that the nonlinearities s(.) are fixed, and that the only parameters

susceptible to training are the linear weights C.

If z is the M-vector of outputs after the nonlinearity, then we can write each

component zi = s(yi) = s(cix) where ci is the i th row of the matrix C, and

yi = c4x is the %th output of the network before the nonlinearity. Note that the

level contours of each function zi are determined entirely by the vector c, and

that the effect of s(-) is limited to modifying the output value. Intuitively, we

thus expect that if y, encodes a useful parameter of the input x, then zi will

encode the same parameter, although scaled by the nonlinearity s(.).

This can be formalized, and if we choose our optimality principle to again be

minimum mean-squared approximation of the original input x given the output

z, the best solution remains when the rows of C are a linear combination of the

first M eigenvectors of the input correlation Q [Bourlard and Kamp, 19881. This

means that we want a nonlinear algorithm which, like the linear one, finds the

eigenvectors of the input correlation. However, orthogonality may be different,

since the nonlinearity will affect it.

5.1.1 Monotonic Node Functions

Let zi = s(yi) be the output, where s(-) is an odd and monotonic function. This

type of function includes the "sigmoid" functions often used in the literature.

Note that its Taylor series has a constant term of zero, so that if y is zero-mean,

z will be as well.

In section 2.1.2 we noted that the Hebbian algorithm is maximizing the vari-

ance of each output. For the generalized Hebbian algorithm, the variance is being

maximized subject to the constraint of orthonormality of the weight vectors (hence

statistical independence of the outputs). We now show that for x described by
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a Gaussian distribution, (1) maximizing the variance of yj is equivalent to maxi-

mizing the variance of zi, and (2) orthogonality of y, implies the orthogonality of

Zi.

First, we show that maximizing the variance of any yj is equivalent to maxi-

mizing the variance of zi. (For the moment, we will drop the indices i to simplify

the expressions.)

The variance of z is given by

E[z21 = E[s2 (y)]

For a Gaussian function, multiplying the variance a by a factor r is equivalent to

multiplying the random variable y by r and using the original distribution. (y is

Gaussian because it is a linear function of x, which is Gaussian.) Therefore, if we

change the variance of y from a to ra, we will now have

E[z] = E[s'(ry)]

and since s(.) is monotonic, it is clear that for r > 1, the variance of z will increase.

To see that orthogonality of the scalars y, implies orthogonality of zi, we need

only realize that since y, is Gaussian, orthogonality implies independence. Thus

the zi are independent, and are therefore uncorrelated (provided they are zero-

mean).

5.1.2 Rectification Nonlinearity

In the simulations, one nonlinearity s(.) which we use is a rectification nonlinearity,

given by

(yi) yi ifyi j0

1 0 if yj < 0

Note that at most one of {s(yi),s(-yi)} is nonzero at any time, so these two

values are uncorrelated. Therefore, if we maximize the variance of y (before the
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nonlinearity) while maintaining the elements of z (after the nonlinearity) uncor-

related, we need 2M outputs to represent the data from an M-vector y, where

the outputs are given by

S (cjx) = a(yi) 0 < i < Mzi = { a(-cix) = a(-yi) M< i < 2M

Note that 2M may be greater than the number of inputs N, so that the "hidden

layer" z can have more elements than the input.

The outputs zi will not be zero-mean, and this will present problems for train-

ing subsequent layers. In order to make them zero-mean, we can use a standard

iterative algorithm (see [Oja, 19831) to approximate the mean, and then subtract

this value from the outputs.

5.2 Semi-Supervised Learning

To compute a particular desired function at the network outputs, a supervised

algorithm such as Widrow-Hoff (LMS) for a single layer, or Backpropagation for

multi-layer, could be used "on top" of the unsupervised network. For the case

of Widrow-Hoff, the top layer is linear. For Backpropagation, the fact that the

unsupervised net causes reduction in dimensionality, whitening of the input, and

elimination of noise components, may allow faster and more accurate convergence

of the supervised network (which is on top) to the desired function.

If a problem can be solved using a combination of unsupervised and super-

vised techniques to train the network, such a combination will have important

advantages in terms of learning speed. Since the Generalized Hebbian Algo-

rithm causes training time to scale linearly with the size of the network, while

Backpropagation causes it to scale exponentially, we gain time by making the

backpropagation-trained part of the network as small as possible. One possible
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construction technique for a network would be to insert a bottleneck layer at some

point, and then to train everything before the bottleneck using an unsupervised

algorithm, while training everything after the bottleneck using a supervised algo-

rithm. While this may not produce optimal results in all cases, in some instances

it may perform adequately while seriously reducing training time.



Chapter 6

The Nonlinear Generalized

Hebbian Algorithm

In this chapter we show how a simple modification of the linear Generalized Heb-

bian Algorithm (GHA) can be used to train a single-layer nonlinear network. Such

a network is defined to be a linear layer followed by a nonlinearity at each output.

The object of this unsupervised learning algorithm is to find the optimal set of

outputs for linear approximation of the original input with minimal mean-squared

error.

6.1 Algorithm

In chapter 2 we derived the Generalized Hebbian Algorithm for the linear case

which resulted in a weight update rule given by equation 3.2:

cij(t + 1) = cij(t) +-Y (Yi(t)xj(t) - yi(t) Cki(t)Yk(t))

or, in matrix notation, by equation 3.3

C(t + 1) = C(t) + Y (y(t)xT(t) - LT[y(t)YT(t)]C(t))

68



In the linear case, we compute y from x by

y(X) = Cx

In the nonlinear case, we have

z1(x) = S(ci x)

where c is the i ' h row of C. To extend the Generalized Hebbian Algorithm to

the nonlinear case, we apply the same weight update rule 3.2 to the values of zi

generated by the nonlinear network. In other words, the update rule remains the

same, although the feedforward propagation now involves nonlinearities:

C(t + 1) = C(t) + Y (z(t)XT(t) - LT[z(t)zT(t)]C(t)) (6.1)

Note that equation 3.4

C +- C + yi(CQ - LT[CQC T ]C)

is no longer a valid description of the procedure, and that CQCT is no longer

the output autocorrelation. In general, it will be difficult to predict the output

autocorrelation, and this must actually be measured. However, for s(.) monotonic

and odd and x Gaussian, we know that increasing the variance of y, increases the

variance of zi, and orthogonality of y implies orthogonality of z. Therefore, in this

case the variance of the outputs after the nonlinearity will have the same ordering

and orthogonality that the variance before the nonlinearity had.

6.2 Explanation of the Algorithm

Although we have uot proven that the nonlinear Generalized Hebbian Algorithm

(GHA) converges, we can give a heuristic analysis of its stable points. First,

assume that C(t) changes slowly relative to x(t) (-f is small) so that we can take

the expected value over time of both sides of equation 6.1 to obtain:

C(t + 1) = C(t) + E[z(t)x T (t)] - LT[E[z(t)z T (t)j]C(t)
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(For the correlations to make sense, we should estimate E[z] and subtract it from

the output to make it zero mean.) If x(t) is a time-independent Gaussian process

with correlation Q, then E[z(t)xT (t)] - kCQ for some proportionality constant k

(see, for instance, [Hunter ;nd Korenberg, 1986]). If the algorithm converges, we

expect C(t + 1) ; C(t), so we seek solutions of

kCQ - LT[E[z(t)z T (t)]]C(t) = 0

If we look at the first row of C at steady-state, it satisfies

kQcj = E[z ]cl

so it is proportional to some eigenvector of Q. (In practice, it usually converges

to the eigenvector of largest eigenvalue.) Similarly, the second row c2 satisfies

kQc2 = E[z ]c2 + E[zlz2 ]cl

If z, and z2 are uncorrelated, then E[ziz 2] = 0, and if a solution exists, it is

proportional to some eigenvector of Q (possibly proportional to, but not the same

as cl). If E[zIz 2] # 0, then a possible solution is c2 o c, and others may exist as

well. We can continue this type of analysis for the other rows of C.

For a rectification nonlinearity, we have E[zz 2] = 0 if either c2 = -cl or

cTQc 1 = 0 (where the input is Gaussian and the output has been modified to

have mean zero). We thus expect that C may converge to a matrix each of whose

rows is proportional to an eigenvector of Q, and for which no three rows are

proportional to the same eigenvector. In practice, the first two rows usually con-

verge to the eigenvector of largest eigenvalue and its negative, and all subsequent

rows occur in pairs ordered by eigenvalue. The algorithm is therefore finding the

outputs which (for Gaussian inputs) maximize the output variance yet remain un-

correlated. Although these are only heuristic arguments, they help to explain the

observed behavior of the algorithm when a rectification nonlinearity is present.
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6.3 Multi-layer Networks

For linear networks, having more than one layer is unnecessary, since a multi-

layer linear network can always be compressed into a single layer. In chapter 4 we

sugges'ed that a two layer linear network can be useful if the first layer is trained

according to an unsupervised learning rule, while the second is trained using a

supervised rule. However, after the training is complete, the network could still

have been compressed into only a single layer.

For nonlinear networks, however, multiple layers confer a great increase in

potential. The range of functions which can be computed with a multi-layer

network is significantly greater than that which can be computed with a single

layer. Although there may well be useful functions which can be well approximated

with only a single layer, many more functions can be approximated if we can add

layers arbitrarily. For data compression, it is possible that higher layers may be

able to find more efficient encodings than lower layers.

Since the nonlinear Generalized Hebbian Algorithm is an unsupervised algo-

rithm, the training of each layer is independent of the training of the layers above.

The layers below affect training only to the extent that they change the input

distribution. Therefore, a multi-layer network can be trained "bottom-up" in the

sense that the layers closest to the input are allowed to mature, and then the

layers above can mature. As each layer converges to a stable set of weights, the

output distribution will remain fixed, and the layer above will be able to use that

distribution to change its set of weights. Once the next layer has converged, its

output distribution will be fixed, and training can propagate upward through the

network until the entire net is trained. Note that there is no reason not to train

all layers simultaneously, except that each layer will not converge to its final set

of weights until all the layers below have converged.

We see that the training time will be at worst equal to the sum of the training

time for each layer, and perhaps better if higher layers "track" the development of
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the ones below during training. In section 3.6 we saw that the rate of convergence

for any layer is approximately a linear function of the number of outputs of that

layer. The discussion also holds true for the nonlinear case, since convergence

of any output unit requires all previous outputs to have converged so that the

effective (subtracted) input is stable. Therefore, the training time for the entire

network is approximately proportional to the number of units in the network.

This is considerably better than the exponential time dependence which has been

observed for the backpropagation algorithm (see section 1.2.1).



Part III

Examples



Chapter 7

Learning Curves

In this chapter we will show curves for the rate of learning of networks trained with

the Generalized Hebbian Algorithm (GHA). The networks are given input which

is a set of jointly Gaussian variables with a randomly chosen correlation matrix.

Convergence of any particular layer is shown in terms of the diagonalization of the

output correlation matrix. Note that the Generalized Hebbian Algorithm must

not only diagonalize the output, but must also keep the basis vectors orthogonal

and normalized. Therefore, diagonalization of the output does not completely

determine the energy function for convergence, and the function which we define

.:1 not- change monotonically with time (for the true energy function, gradient

descent would force the energy to monotonically decrease).

7.1 Linear Networks

Figure 7.1 shows the diagonalization and output errors for a linear network

being trained to auto-associate. The network has five input units, three hidden

units, and five output units, and it is trained "semi-supervised". The first layer

is trained using the Generalized Hebbian Algorithm (GHA), and the second layer

is trained in a supervised manner using the Widrow-Hoff algorithm, so that the

75
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Figure 7.1: Learning curve for a two-layer linear network showing both progressive
diagonalization of the autocorrelation at the hidden layer, as well as progressive
decrease in approximation error at the output (see text). Vertical axis is both the
diagonalization and the mean-squared output error.

outputs attempt to approximate the inputs.

Figure 7.1 shows the diagonalization of the hidden layer correlation increasing

with time, while the mean-squared output error decreases. (The printed values

are computed at each time using a running average of past values.) The diago-

nalization is computed as

D 2trace[CQCr] - trace[CQCT CQCT]trace[CQCTCQCT]

which compares the diagonal entries to the off-diagonal entries in the output

correlation matrix, and normalizes by the sum of the squares of all the entries.

The diagonalization approaches 1, indicating that the off-diagonal elements of

CQCT are small compared to the diagonal elements. The output error does not

reach zero, however, since it is impossible to code five inputs with only three

hidden units without a certain amount of error (the minimum error is determined

by the smallest two eigenvalues).
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Figure 7.2: Learning curves for the two-layer network of figure 7.1 when trained
using Self-supervised Backpropagation.

Figure 7.2 shows the effect of training the same network of figure 7.1 using self-

supervised backpropagation (SSBP). The sequence of inputs, the initial random

weights, and the learning rates were identical, and both the output error and

hidden-layer diagonalization are shown. The output error is almost identical, as

we would expect. The diagonalization is not quite as good, indicating that the

hidden layer units are not completely uncorrelated. As mentioned previously,

GHA and SSBP are equivalent for linear networks, except for the fact that SSBP

does not find the actual eigenvectors, but instead finds some linear combination

of them. Note that we cannot compare the speed of convergence between the two

different algorithms, since the speed can be increased arbitrarily by increasing the

rate constant for learning (until instability results). We can, however, compare

the final value of the mean squared output error once each algorithm has had

sufficient time to converge.
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Figure 7.3: Learning curves for a two-layer nonlinear network.

7.2 Nonlinear Networks

For the nonlinear examples, we use a sigmoid nonlinearity given by

s(X) = 1 + 2  e- 1

and the diagonalization is computed using

D = 2traceE[yyT] - traceE[yyTyyT] (7.1)
traceE(yyTyyT I

The expected value E[yyT] was approximated using past values of the matrix

yyT. Note that one cannot use CQCT in the nonlinear case, since this expres-

sion does not describe the true correlation matrix at the hidden units (after the

nonlinearity).

Figure 7.3 shows the diagonalization and output errors curves for a two-layer

nonlinear network trained using semi-supervised learning. There are five inputs,

three hidden units, and five outputs. There is a sigmoid nonlinearity at the

hidden units, but not at the outputs. The first layer is trained using the nonlinear
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Figure 7.4: Learning curves for the two-layer nonlinear network of figure 7.3
trained using Self-supervised Backpropagation.

GHA, while the second layer is trained using the Widrow-Hoff algorithm. The

diagonalization is graphed according to equation 7.1, and approaches the limit of

1. The output error achieves its minimum value by step 1000, even though the

diagonalization continues to improve slightly.

Figure 7.4 shows the same network as figure 7.3 trained using SSBP. The

data, initial weights, and learning rates were the same for both networks. The

output errors decreased at almost exactly the same rate. The diagonalization

of the hidden units proceeded much more slowly, however, and appears to be

almost linear with time as opposed to GHA which gave a more exponential change

in diagonalization with time. Note that for the auto-association problem, we

would expect semi-supervised learning and backpropagation to achieve practically

identical results in terms of output error, since SSBP and GHA are equivalent.

However, for backpropagation in which the desired output is not the same as the

input, we would expect semi-supervised learning to be considerably worse. This is

due to the fact that the only supervised layer is the last one, so the hidden layers
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Figure 7.5: Learning curves for a three-layer nonlinear network. Diagonalization
is shown only for the first layer.

cannot optimize themselves to perform the particular desired task. However, since

the Generalized Hebbian Algorithm was designed to optimize the reconstruction

of the input, the two algorithms are equivalent in this particular case.

Figure 7.5 shows the learning curves for a nonlinear network with five inputs,

two layers of three hidden units, and five outputs. Each hidden layer has a sigmoid

nonlinearity. The two hidden layers are trained using the GHA, while the output

layer is trained using Widrow-Hoff to approximate the inputs. Figure 7.5 shows

the diagonalization for the first layer of hidden units, as well as the mean squared

output error. The time between convergence of the first layer (step 500) and the

minimum output error (step 1300) represents the time needed for the second and

third layers to converge.

For comparison, figure 7.6 shows the ne , rk of figure 7.5 trained using Back-

propagation. The data, initial weights, and rates were the same. The network

achieves the same final value of mean squared approximation error. (Although it

does not converge until step 2200, we should not use this as a speed comparison
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Figure 7.6: Learning curves for the three-layer nonlinear network of figure 7.5
when trained using Self-Supervised Backpropagation.

since it depends on the rate constants chosen for the two algorithms.) How-

ever, note that the first layer diagonalization does not occur until significantly

later. In fact, this diagonalization occurs while the output error is approaching

its minimum value. This reflects the fact that for backpropagation, the top lay-

ers train first, and then the errors propagate to the lower layers. Conversely, for

semi-supervised learning, the lower layers train first, and the top layers converge

afterwards. Therefore, in figure 7.5, diagonalization of the first layer is the first

thing to occur, wherease in figure 7.6 the first layer is not diagonalized until the

second layer has had time to converge. At this point, both hidden layers have

converged and the output error achieves its minimum value almost immediately.



Chapter 8

Texture Segmentation

One field in which neural networks are potentially useful is the field of image

processing. There are many unsolved problems in image processing, and the ca-

pability of networks to discover useful algorithms on their own suggests many

important applications. Of course, the current state of neural network research

limits the real-world applications to very simple types of processing. The sig-

nificance of unsupervised algorithms for image processing is the ability to find

"features" of the image which can be used for coding or to locate distinct re-

gions. Decomposition of an image into features is an important component of

both machine and biological vision.

For our purposes, we define texture segmentation as the discovery of a set

of features which vary over the image in such a way that regions of different

"texture" are maximally separated. Unfortunately, this definition suffers from a

lack of knowledge of what we mean by "texture". Texture has been defined in the

computer science literature in many different ways. Here, we assume that a region

of uniform texture can be described by a spatially stationary stochastic process

which is determined by second-order (or higher) statistics. The stationarity is

what defines a texture region. Clearly, the statistics will not remain stationary

over the entire image, but we require them to remain stationary over what we

S2
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thereby define as a uniformly textured region. The only example we present is an

artificially simplified texture consisting of horizontal and vertical lines. We must

emphasize that this is not a general model of texture, and that these results should

be considered a preliminary demonstration of the algorithm and not a workable

method for real texture segmentation.

Spatial stochastic processes described entirely by second-order statistics may

be important for humans, since we can often discriminate textures differing in

seconu-order, but not third-order, statistics [Julesz, 1971] (although there are

counter-examples). Second-order stationary regions are described completely by

the mean luminance and the two-dimensional autocorrelation function. These

statistics can be generated by passing a white noise image through a two-dimensional

linear filter. We will therefore model such texture regions as filtered white noise.

Different regions of uniform texture have second-order statistics generated by dif-

ferent linear filters applied to white noise. The linear least squares estimator

(LLSE) for distinguishing two such regions is formed by comparing the output

amplitude of two filters each of which is matched to one of the texture regions.

This is the optimal linear estimator, and if the textures are truly second order,

then it is the nonlinear optimal estimator as well.

In the following discussion, we will show examples of a single-layer linear net-

work which has been trained to solve a simple texture discrimination problem.

The two textures differ in only their second order statistics (they have the same

mean luminance, and the same higher order statistics). Therefore, the linear esti-

mators determined by the network could theoretically be the optimal estimators,

if the network is trained properly.

8.1 Feature Discovery
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Figure 8.1: 128x128 (8 bit) image consisting of two different textured regions.

Figure 8.1 consists of two regions of texture which differ only in their second-

order statistics. (This is a very artificial example of texture, and we use it only

to demonstrate simply the behavior of the algorithm.) This image was used as

input to train a network in the following way. Small 8 by 3 blocks of the image

were extracted, and the 64 grey values were used as inputs to the network. Blocks

were chosen beginning at the upper left and proceeding across and down over

the image, and the entire image was scanned ten times for a total of 2500 input

examples. Before training the network, each 8 by 8 input block was multiplied

by a spatially Gaussian mask with variance 2. The purpose of the mask was

to force the input to have greatest power near the center of the blocks, so the

network would not attempt to represent the edges (which have a great deal of

power, but not as much useful data). The network was linear and had 64 inputs

and 8 outputs. After training, we display the vectors of weights to the outputs as

8 by 8 masks, as in figure 8.2.

The ot-)ut order proceeds from left to right and top to bottom. Note that due

to the Gaussian mask which was applied to the input, each output has learned a
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Figure 8.2: The first eight masks learned by a network trained on 8 by 8 patches
of figure .1. .asks are ordered left to right and top to bottom.

pattern with a roughly Gaussian amplitude response. The first mask represents

the average local image intensity, since it is essentially a lowpass spatial filter.

The second mask can be considered to be an "edge-detector" for vertical edges.

Likewise, the third mask is an "edge-detector" for horizontal edges. The fourth

and fifth masks are -bar-detectors" for vertical and horizontal bars, respectively.

The sixth. seventh, and eight- masks perhaps recognize corners or ends of lines.

We mav now ask why these particular masks evolved. The answer lies in

the fact that the training algorithm attempts to maximize the output variance

while maintaining the outputs orthogonal. These eight masks can be shown to be

approximatoly orthogonal (by computing the output cross-correlation). For ex-

aMrpie. l,)riz )Tital Ind vert ica] "edge-detectors' are orthogonal both with respect

i input ,ii> rliblt i', , horizontal an(l vertical edges never occur tovth ler). and

. , , 1e H] frli', ,iM tii, o , ntrl t ipivin , t1 He two mask- owzelhewr arti

v ,. , ,, . ,, ," ',, 1 tir r a i a lw ass tilr t' -
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that the low-frequency variations in intensity have very high variance over the

image.

The second through fifth masks will have higher variance in one half than

the other. They maximize their variance by maximizing it with respect +o a

particular texture, since the only mask with higher variance over the entire image

is the lowpass filter. A vertical "edge-detector" will have very high variance in

the right half of the image, but lower variance in the left half (and conversely for

a horizontal "edge-detector"). Since it has high variance only for half the image,

its variance is not as great as the lowpass filter. A "bar-detector" also has high

variance in one half or the other, although not as much as the edge detectors.

However, bar detectors can be orthogonal to edge detectors, so the next two

masks are bar detectors. The sixth, seventh, and eighth masks will respond to

both halves of the image, but their variance in each half is not particularly great,

so these filters appear only in the later outputs. (If the input image had consisted

of short lines at different orientations, or a different set of patterns, we might

imagine that masks would develop to match these patterns, and in fact this is

what happens, although we do not present these results here.)

8.2 Amplitude Response

Figure 8.3 shows the result of convolving the input image of figure 8.1 with

the masks learned by the network (figure 8.2). Since each of the learned masks

has an approximately Gaussian amplitude distribution, the convolved images are

somewhat blurred. However, it is clear that the first mask is a lowpass filter,

while the edge- and bar-detectors respond to one half of the image or the other.

What is meant by "respond" is that the output variance is higher for one textured

region than for the other. To see this. we take the absolute value of the convo-

1ition outputs of figure 8.3 and then lowpass filter the result by convolving with
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Figure 8.3: Result of convolving the input image 8.1 with each of the masks of
figure 8.2.

a Gaussian mask of variance 3 pixels. This procedure gives an approximation to

the local variance, and the result is shown in figure 8.4.

It can clearly be seen that masks two and three have significantly higher vari-

ance on one half of the image or the other. The other filters show less of a

difference. But the first two filters can be used in this way to separate the original

input into textured regions. Note that the network has not discovered "matched"

filters for the texture regions which give high positive amplitude in the presence

of a particular texture. Since the algorithm will maximize variance, the network

has learned a set of masks which give high output variance in the presence of a

particular texture. To use this output to perform texture segmentation, we need

to have some method for measuring the local variance. Taking the absolute value

of the convolution product and filtering is one way to accomplish this.

Note that the network will not necessarily find a set of masks such that each

mask responds optimally to a particular texture. Rather, it will find masks such

that he orIlrf set can be used to discriminate different textures. This allows a
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Figure 8.4: Approximation to the local variance of 8.3.

much larger number of textures to be discriminated, since they could theoretically

be recognized as a combinatorial pattern of variance on the output units.

8.3 Biological Relevance

There is extensive evidence that early stages in primate cortical image process-

ing involve filters which are' similar to edge and bar detectors (see, for example

[Hubel and Wiesel, 1974, Foster et al., 1985]). This processing is performed by

the (approximately spatially) linear simple cells. There is also increasing evidence

that the nonlinear complex cells can be modelled as "envelope detectors" or "am-

plitude demodulators" of the input signal [Cavanagh, 1984, Baker and Cynader,

1986, Pollen et al., 1988]. One way to implement such a model is by taking the ab-

solute value of the output of a linear filter and lowpass spatial filtering the result.

This is the procedure that we used to isolate texture regions for figure 8.4. This

method has been suggested as a model for certain types of complex cells, as well



8.3. BIOLOGICAL RELEVANCE 89

[Pollen and Ronner, 1983, Cavanagh, 1984, Spitzer and Hochstein, 1985, Gaska

et al., 1987]. Therefore, we might expect that one of the functions of cortical

complex cells might be texture discrimination, and that these cells might perform

this task using a method similar to the one we used to interpret the output of the

artificial neural network. In fact, there is some evidence that complex cells can

perform texture discrimination [Nothdurft and Li, 1985].

A mechanism similar to that proposed here has been simulated using Gabor

functions to model the first-layer linear masks [Turner, 1986]. The absolute value

function can be performed by adding the (rectified) outputs of simple cells with

180-degree differences in phase response [Pollen and Ronner, 1983, Turner, 1986].

Summation over many such simple cell outputs would then produce a local es-

timate of the output variance of the first layer. Gabor filters were also used in

[Daugman, 1988a] to perform texture segmentation, although the local variance or

response amplitude was not explicitly computed. Similarly, Voorhees (1987,1988)

used V 2G filtering to discriminate texture regions, while Bergen and Adelson

(1988) used a center-surround with a rectification nonlinearity.



Chapter 9

Cortical Receptive Fields

There have been several attempts to have a neural network learn to produce

visual receptive fields similar to those found in primates [Bienenstock et al.,

1982, Linsker, 1986a, Barrow, 1987, Kammen and Yuille, 1988, for example]. In

this chapter we present yet another attempt. An important difference between the

method presented here and previous attempts is that we can show why the partic-

ular receptive fields developed and that these receptive fields have a significance

which is independent of the learning algorithm which produced them.

9.1 Methods

We assume that the world passing in front of the retina of a developing animal

can be modelled (to second-order statistics) as white noise. We also assume that

the retina performs linear processing which can be modelled as bandpass spatial-

frequency filtering. The inputs to the network will come from only a single type of

bandpass retinal filter, and these inputs will be limited to a small circular region

of the input image by having a spatially Gaussian weighting applied as an input

mask.

With these assumptions. the input to the network is generated by starting

90
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with a white noise image with mean zero, lowpass filtering using a Gaussian filter,

and then applying a Gaussian windowing function to the result. The network has

4096 inputs arranged as a 64x64 array. For the following simulations the filtering

Gaussian has a standard deviation of 3 pixels and the windowing Gaussian has a

standard deviation of 8 pixels.

The simulated inputs have been applied to two different types of network.

The first is a linear network with 4096 inputs and 16 outputs. We would expect

the 16 outputs to converge to approximate the first 16 eigenvectors of the input

distribution. The second type of network is also a single layer, but a rectification

nonlinearity is applied so that negative outpiis are set to zero. This is intended as

a simulation of the fact that in a biological system there is no ability to represent

* a negative response using the output spike frequency fiom a cell. The effect on

the masks which are learned by the network is that the negative of a filter is

orthogonal to the filter, since if one is positive, the other must be zero. Therefore,

the network can learn both a filter and its negative (which is not possible in the

linear case, since these two filters are strongly (anti-) correlated).

9.2 Results

Figure 9.1 shows the first sixteen receptive fields which are learned by a single-

layer linear network with 4096 inputs and 16 outputs. (White is positive and

black is negative values.) 1500 sample inputs were used. The first mask is an

"on-center" cell which has a strong positive center and a circularly symmetric

inhibitory surround. It is therefore an isotropic bandpass spatial frequency filter,

of the type often found in retina, LGN, and cortex of the cat and monkey [Maffei

ard Fiorentini, 19731. The second and third filters are "edge-detectors" and the

fourth, fifth. and sixth are oriented "bar-detectors", as often are found in the

cortex of cat and monkey [Hubel and Viesel. 1962. Hubel and Wiesel. 1974. Foster
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Figure 9.1: First 16 receptive field masks learned by a linear network with random
input. Ordering is left to right and top to bottom. Brightness has been normalized
so that the maximum for each mask appears white. The actual magnitudes are
determined by the requirement that the sum of the squares of all the pixel values
for each mask must be 1.

et al., 1985, for example]. Beyond these filters, we find higher-order filters with

different spatial patterns. No cells with such receptive fields have ever been found

in primate cortex.

Figure 9.2 shows cross-sections through the major axes of the first, third,

and sixth masks of figure 9.1. The first cross-section is qualitatively similar to

the receptive field shapes of retinal ganglion cells shown in [Enroth-Cugell and

Robson, 19661. The second and third cross-sections are similar to the receptive

field shapes of cortical simple cells shown in [Andrews and Pollen, 1979].

Figure 9.3 shows the receptive fields which develop when a rectification non-

linearity is present during learning. In this case, a field and its negative will be

orthogonal. and we would expect both to be present after learning. The first two
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a.

Figure 9.2: (a) First, third, and sixth receptive fields from fig. 9. (b) Cross-
sections of (a) through major axes.

filters are off- and on-center circularly symmetric bandpass filters. The third and

fourth are edge detectors'both tuned to horizontally oriented edges of opposite po-

larity. The following filters often do not come in pairs, but represent a number of

different oriented edge and bar detectors. These filters have differing orientations

as well as differing spatial phase (as found for cortical cells in [Pollen and Ronner,

1981]). Since more of the outputs are taken up due to the extra filters possible

with the rectification nonlinearity, we see fewer of the "higher-order" filters that

we found in figure 9.1. However, if more outputs were available, these filters would

develop in this case, as well.

9.3 Discussion

These results are not meant to imply that the visual system develops through

an adaptation mechanism similar to the algorithm presented here. We have no

evidence for such a claim. Rather, we claim only that our results imply that

there exist simple algorithms through which the observed receptive field shapes

can develop.

Since the Generalized Hebbian Algorithm finds the eigenvectors of the input
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Figure 9.3: Nonlinear receptive fields ordered from left-to-right and top-to-bottom.

distribution, the masks which it learns must be the eigenvectors of the data we

presented. Since these masks are similar to the actual observed receptive fields,

it follows that the receptive fields may actually be performing an eigenvector

decomposition of the input and therefore have the optimality properties of the

KLT (if we assume that the statistics of typical visual input can be modelled as

bandpass filtered white noise).

This interpretation of the role of the visual cortex unifies several other dis-

parate views of its computations. Some authors believe that the visual cortex

recognizes simple features in the environment which represent significant parts

of the image such as edges or blobs [Hubel and Wiesel, 1962, Marr, 1982, for

instance]. Other authors consider the early stages of the visual system to be

performing a localized spatial-frequency decomposition of the image, or a sort

of "local Fourier transform" [Shapley and Lennie, 1985, for review]. However.
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these two seemingly different viewpoints are both equivalent to the observation

that simple cells represent the eigenvectors of the input distribution. It is well

known that the eigenvectors of any stationary distribution are given by complex

exponentials, which is the same basis as that of the Fourier transform (see [Kaza-

kos, 1983, Yuille et al., 1988] for a detailed discussion). Therefore, the Generalized

Hebbian Algorithm will learn a set of filters which can perform a spatial-frequency

analysis of the input image. Also, if the input image has statistically significant

features such as edges, maximization of variance will produce "edge-detectors".

In figure 9.1 we see that spatial-frequency detectors and edge detectors can have

very similar shapes.

The significance of the filters learned by the Generalized Hebbian Algorithm is

thus greater than either spatial frequency analysis or feature detection. Both types

of decomposition of the image occur simultaneously due to the maximization of

output variance. The algorithm chooses its representation of the input based upon

the true statistics of the input. For real scenes, these statistics include features as

well as spatial frequency components.

9.4 Other Work

We will compare this model of cortical development with two others which have

recently been proposed. There are many examples in the literature, [Von der

Malsburg, 1973, Bienenstock et al., 1982, Yuille et al., 1988, among others] but

the main ideas presented here will be explained in the context of these two.

9.4.1 Linsker

Linsker has proposed a multi-layer linear network model of cortical development

[Linsker., 1986a. Linsker, 1986b, Linsker, 1986c]. The input is random white noise.

and he shows that the network converges to cells which in early layers resemble
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center-surround cells, while in later layers resemble edge- and bar-detectors. Since

Linsker's network is capable only of finding the principal eigenvector, he uses mul-

tiple layers to enable the principal eigenvector to be different at each layer. For

the earlier layers, the principal eigenvector is the center-surround, as we found

in the simulation using the Generalized Hebbian Algorithm. At later layers, for

certain values of his parameters, oriented edge- and bar-detectors become the

principal eigenvectors (perhaps due to symmetry-breaking [Kammen and Yuille,

1988]). Since he can only derive the principal eigenvector, Linsker requires mul-

tiple layers in order to obtain different types of cells. Note that the layers are all

linear, and coula therefore after training be represented with only a single layer.

As a model of cortical synaptic development, there is not sufficient evidence to

choose between che model that Linsker proposes and that presented here. Linsker's

method is less intuitive from a mathematical standpoint, since it does not derive

all the eigenvectors at the same time, and since it is not clear that anything beyond

the first few are capable of being found by his network. However, such facts mean

nothing to biology, and this does not rule out his model as an explanation for the

actual development of cortical synapses.

One apparent difference in implementation between the method we present and

Linsker's is that he starts with a white noise image, while we provide a carefully

chosen image which is lowpass filtered and then windowed. However, if we look

at Linsker's first layer, he chooses parameters such that all the synaptic weights

are +1, and he constrains these synapses to have a distribution which falls off

spatially as a Gaussian function. Therefore, the second layer of Linsker's network

presents the third layer with exactly the same input which we use here. This is

why the third layer of his network develops center-surround cells, which we found

to represent the principal eigenvector of this particular distribution. Note that.

if we assume Gaussian windowing but wish to derive the lowpass filter, a lowpass

filter is the principal eigenvector of any distribution for which the mean is nonzero.
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Since there is no such thing as a negative luminance, whatever signal is sent from

the retina (or within it) must have positive mean, and therefore the first layer

which adapts to that information will respond to the principal eigenvector which

is a lowpass filter.

9.4.2 Barrow

Barrow [1987] has developed a very similar model to ours. He also uses a Gaussian

windowing function, but with a bandpass spatial filter preceding it (which he

claims is a model of retinal and LGN processing). He uses a natural image,

however, rather than white noise, and scans over it much as we did for the texturc

segmentation problem. The learning algorithm is equivalent to the Oja algorithm

[Oja, 1982] but with a winner-take-all competitive rule to allow different outputs.

This generates results equivalent to the Generalized Hebbian Algorithm, although

the ordering of the eigenvectors is random, and there may be linear combinations.

Barrow's results show very clear edge- and bar-detectors, whose receptive field

profiles are remarkably similar to those found in cortical cells [Marcelja, 1980].

Barrow's work is equivalent to the model of cortical development presented

here. However, he does not explain why that particular set of cells should develop.

The fact that his results are similar to those produced by the GHA, which is known

to converge to the KLT, provides an answer. By realizing that algorithms such as

Barrow's or GHA accomplish an approximate eigenvector decomposition, we can

understand the true significance of these cells.

9.4.3 Spatial-Frequency Channels

Primate visual systems are divided into many different "channels" for different

ranges of spatial frequency [Shapley and Lennie, 1985, for review]. None of the

models discussed here is capable of learning to represent such channels. The

spatial frequency response of the learned filters is entirely determined by the
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shape of the bandpass filter used to generate the input images (for Linsker, this

is the width of the region of first-layer inputs, and for Barrow it is the shape of

the retinal and LGN filters). This occurs because once we filter the input with a

bandpass filter, most of the variance of the input now occurs in that particular

spatial frequency band.

To model actual cortical processing we would have to assume that different

bandpass filters were "hard-wired" at some early point in the visual system. Note

that filters tuned to different ranges of spatial frequency are orthogonal. How-

ever, the Generalized Hebbian Algorithm does not discover filters with different

frequency response until very late in eigenvalue order, and it requires many iter-

ations to produce poor-quality results. One method to allow different ranges of

spatial frequency to develop is to change the bandpass filter characteristics with

time, and train different outputs at different times. For instance, if we started

with a lowpass filter input and trained one set of filters, then we could increase to

a bandpass filter at the input and train a different set of filters which would now

have a different frequency response. If we desired the new filters to be orthogonal

to the old ones, we could easily "subtract off" the responses of the old filters from

the input before training the new filters, precisely as GHA normally does. The

only difference would be that the weights to the old filters would not be modified.

There is some biological evidence that a change in spatial frequency response

occurs during human development. Wilson [19881 provides a review of some of

the literature. He also derives a theoretical model to exl~lin the increase in

infant visual acuity, which is related to a change in foveal cone density and outer

segment size. This kind of change is exactly what would be required to provide

a changing spatial-frequency distribution to a cortical learning network. For each

range of spatial-frequency inputs, on- and off-center cells would develop first, and

then orientation cells would develop (Wilson cites results showing that orientation

sensitivity does indeed develon slowly r,,r a period of about ten months). As
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the cone spacing and size change, successively higher ranges of spatial frequency

sensitivity would develop.

We must emphasize here that although these results suggest a mechanism by

which GHA could learn multiple spatial frequencies, there is no evidence that such

a learning algorithm is actually used. The results described here are pure corijec-

ture, and demonstrate only that it is not impossible that a similar mechanism

might be functioning in early human development. If this is true, the General-

ized Hebbian Algorithm must be a gross simplification of the biochemical events

which lead to early visual development, and it must be construed as the vaguest

possible generalization of an extremely complex process which researchers in the

neurosciences are only beginning to understand.

9.5 Higher Layers

If we allow a nonlinearity in the network, then higher layers can be allowed to

adapt to the filtered white noise which we used to derive the linear layer of cortical

processing. We can model the nonlinearity at the output of simple cells by a simple

rectification, and use the rectified outputs as input to another layer. We have

not performed this simulation. We can, however, predict that since the outputs

are always positive, the mean is nonzero, and therefore the first eigenvector is a

constant (a lowpass filter). This eigenvector will therefore produce an estimate

of local variance in exactly the same way that we produced figure 8.4. Other

eigenvectors might be similar to oriented edge- and bar-detectors, in which case

they would produce estimates of local changes in variance in different directions.

It becomes difficult to conjecture possible functions for higher layers, but we see

that this form of analysis may be a useful technique for understanding hierarchical

processing of visual information.



Chapter 10

Image Coding

Although any given image contains an enormous amount of information, the data

is not uncorrelated. The aim of image coding is to take advantage of the cor-

relations in the image to find a representation which is considerably smaller yet

which sacrifices a relatively small approximation error. One way to code an image

is to break it up into small blocks and then to approximate each block in some

manner. Typically, a set of filters will be chosen such that linear combinations of

these filters can be used to approximate different image blocks. The mean-squared

difference between the original and the reconstructed image is used as the error

measure. If the image is to be transmitted, then only the coefficients of each filter

need to be transmitted, since presumably both the transmitter and receiver can

agree on a set of filters beforehand.

The data compression is achieved by choosing fewer filters than necessary to

exactly represent any image block. The transmitted coefficients are quantized into

a small number of bits for transmission. Compression is usually measured in units

of bits per pixel, which is the total number of bits transmitted per image divided

by the total number of pixeis in the image. The error is usually measured as the

100
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Figure 10.1: 256x256 pixel (8 bit) test image for coding. (A. Eisenstadt, "The
Dragon is Slain")

signal to noise ratio

SNR =(n-'n2)21
E[(f(ni, n2) - f(ni, n2))2]

where f is the original image data, and f is the reconstruction from the transmit-

ted coefficients.

10.1 Results

Figure 10.1 shows an original image taken from part of an Eisenstadt pho-

tograph and digitized to form a 256x256 image with 256 greylevels. We use a

single-layer linear neural network with 64 inputs and 8 outputs. 8x8 blocks of

the image are used as training samples, with the image being scanned from left

to right and top to bottom. The sample blocks do not overlap, and the image
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Figure 10.2: 8x8 masks learned by a network trained on fig. 10.1.

is scanned twice to allow time for the network to converge. The weights which

the network learns are represented as 8x8 masks shown in figure 10.2. Each mask

shows the set of weights associated with a single output. White indicates positive

weights, black indicates negative, and grey indicates zero. In our notation, the

masks are the rows ci of the 8x64 weight matrix C after it has converged.

To code the image, each 8x8 block of the image is multiplied by each of the

eight masks to generate eight coefficients for coding. The coefficients for the block

starting at position n, m in the image I are thus given by

8 8

Vi = : Z: Ci,p+8qIn+p,m~q
p=l q=1

The coefficients vi  are then uniformly quantized with a number of bits approx-

imately proportional to the log of the variance of that coefficient over the image.

This results in the first two masks being assigned five bits each, the third mask

three bits, and the remaining masks two bits each. Therefore, each 8x8 block of

pixels is coded using a total of 23 bits, so the data rate is 0.36 bits per pixel.

To reconstruct the image from the quantized coefficients "" each block of the

image is re-formed by adding together all the masks weighted by their quantized
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Figure 10.3: Image of fig. 10.1 coded at .36 bits per pixel.

coefficients:
S

In+p,m+q E C4 ,p+8q ̂  n

The resulting image is shown in figure 10.3. We calculate the normalized mean

square error as the ratio of the error variance to the data variance

NMSE = E[(I,m _ i.,m)2]

E[In,m]

which is 0.043 for this image. Note that no post-processing was performed to

remove the blocking effect, although it can be significantly reduced by smoothing.

The network has learned a linear coding for the input data which approximates

the optimal KLT. The masks are the "eigenvectors" of the input image, and they

represent most of the variance in the 8x8 blocks which were used for training.

Because the network outputs have high variance, they convey much of the input

information, and we only need to use a few outputs (eight, in this case) to estimate
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the input data. This is the meaning of data coding; we have reduced 64 eight-bit

pixels (512 bits total) to eight coefficients quantized with from two to five bits (23

bits total). The network chose masks which allow only 23 bits to represent most

of the information in the original 512 bits.

We might now ask whether this same set of masks would be useful on a different

image. Figure 10.4 is an image of a dog, and figure 10.5 shows the image after it

has been reconstructed from quantized coefficients derived from the set of masks

in figure 10.2. Note that the network was never trained on the image of figure 10.4.

In this case, the output of the first two masks was quantized using seven pixels

each, the third with five pixels, the fourth with four pixels, and the remaining

coefficients with three pixels each. This gives a total of 35 bits, or a bit rate of

0.35 bits per pixel. The NMSE is 0.023 here which is actually lower than the error

for the image of figure 1, due to the increased number of bits used for coding. The

fact that the same set of masks can be used to code two different pictures is an

example of "generalization" of the network. Although the images are different,

their statistics may be similar enough that their respective KLTs are similar. A

network trained on either image will compute a set of masks which will be useful

for the other. This generalization property is a direct consequence of the statistical

similarity of the two images.

Filters similar to those given in figure 10.2 have been used for image coding

by many authors. The Discrete Cosine Transform masks are qualitatively similar

(see (Lim, 19881 for a description), and Daugman [1988] has performed image

coding using two-dimensional Gabor filters which are similar to the masks which

our network learned.

Cottrell et. al. (1987) used self-supervised backpropagation to perform image

coding, with bit rates as low as 0.625 bits per pixel. They used a network with 64

inputs, eight hidden units, and 64 outputs. Their training samples were, as here,

8x8 blocks of the image, and the network was trained to approximate the input
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Figure 10.4: 256x256 pixel (8 bit) test image for coding.

data at the output units. As mentioned above, such a network will not actually

find the KLT, but can be proven to converge to outputs which represent linear

combinations of the KLT vectors [Baldi and Hornik, 19891I. Since the hidden units

will all have approximately equal variance [Cottrell et al., 1987, Baldi and Hornik,

19891, it is not possible to quantize them with different numbers of bits, as it was

for the KLT. This fact significantly reduces the maximum bit rate which can be

achieved. It should also be noted that Cottrell et. al. (1987) trained their network

for 150,000 iterations, while the network which learned the masks of figure 10.2

was trained for 2048 iterations.
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Figure 10.5: Image of fig. 10-4 coded at .55 bits per pixel using the same masks

as in fig. 10.2.
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10.2 Coding and the KLT

The coding technique we are using is equivalent to the block Karhunen-Loeve

transform, a standard procedure in image coding [Lim, 1988]. The KLT is prov-

ably optimal for block coding in that it produces the minimum value of mean

squared error. It has been found that for large classes of images, the eigenvectors

determined by the KLT are not significantly different, and therefore the masks

determined from one image can often be used to code a different image (with

similar statistics) with acceptable quality.

The KLT for certain classes of image is similar to the Discrete Cosine Trans-

form (DCT) which is a popular image coding technique. Since the DCT masks

are the same for all images (unlike the KLT) and fast computation algorithms

exist, the DCT is used more often than KLT-based algorithms for image coding.

Nevertheless, we have shown that an unsupervised learning algorithm can be

used to solve an image coding problem with accuracy close to that of currently used

algorithms. This fact provides strong justification for the study of unsupervised

algorithms such as the Generalized Hebbian Algorithm, and shows that neural

networks are capable of performing important practical tasks.



Chapter 11

Learning Stereopsis

In this chapter we present an example of how the Generalized Hebbian Algo-

rithm can be used to perform a simple type of analysis of a pair of stereo images.

The images we will use have been artificially chosen so that the algorithm per-

forms well and the results are easy to understand. We do not mean this to be a

generally useful stereo algorithm, but rather a preliminary demonstration of some

of the abilities of the algorithm.

The analysis of stereo images usually involves matching points in the left and

right images and computing the difference in position of a given point. This

difference is called the "disparity". Many techniques exist to compute the disparity

(for a partial review, see [Poggio and Poggio, 1984, Sanger, 1988c].) As will be

shown below, the Generalized Hebbian Algorithm will train a properly constructed

network to perform sterenpsis based upon local bandlimited cross-correlation of

the left and right images. Since cross-correlation is a linear operation, a single-

layer linear network which used it would not be able to find a feature such as

a depth edge, or a change in disparity. It could only give outputs proportional

to the disparity itself. We therefore will use a two-layer nonlinear network to

demonstrate that additional power can be gained from the nonlinearity. We will

see that such a network will be able to respond to a depth edge in the artificial

108
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Output:
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Input-
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Figure 11.1. Structure of the stereo network. See text for a description.

Figure 11.2: Hidden layer response for a two-layer nonlinear network trained on
stereo images. The left half of the input random dot image has a 2 pixel disparity.
and the right half has zero disparity.
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test images we present.

11.1 Methods

We now show how the nonlinear Generalized Hebbian Algorithm can be used to

train a two-layer network which can detect disparity edges. The network has 128

inputs, 8 types of unit in the hidden layer with a rectification nonlinearity, and 4

types of output unit. We think of this structure as representing a "hypercolumn"

processing unit, so that for a 128x128 retina, there is a set of 8 hidden units over

each point. Each of these hidden units responds to an 8x8 region centered at it3

position in both the left and right images. (See figure 11.1.) A type of unit is

determined by its particular receptive field, so all hidden units of the same type

will have identical shaped but partially overlapping receptive fields in the two

images. Since there is one hidden unit of each type at each spatial location, there

are 128x128=16384 hidden units of each type, and a total of 8x16384=131072

hidden units altogether. The output of each hidden unit is rectified. The output

layer has four types of units, and again we assume that there is one of each type

centered at every retinal position, giving a total of 128x128x4=65536 output units.

Each unit can respond to a 16x16 region in each of the hidden unit planes, so there

are a total of 8x1x16=2048 inputs to each output unit. Note that the output

unit inputs span several adjacent "hypercolumns" in the hidden unit layer, and

that adjacent output units of the same type have the same receptive fields and

re- -ond to overlapping regions in each hidden unit plane.

Since all units of a given type at a given layer have the same receptive field,

only one is trained, and this mask is copied into the others. To compute the

output at the hidden layer for a particular type of unit, its mask is convolved with

the input image and the result is rectified, since convolution applies the mask at

every spatial position. Similar processing is performed to compute the output
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Figure 11.3: Output layer response for a two-layer nonlinear network trained on
stereo images.

layer, although without the nonlinearity.

To train the network, a random-dot stereo pair was generated in which the left

half had a disparity of two pixels, and the right half had zero disparity. The image

was convolved with a vertically-oriented elliptical Gaussian mask to remove high-

frequency vertical components. Corresponding 8x8 blocks of the left and right

images (64 pixels from each image) were multiplied by a Gaussian window function

and presented as input to the network, which was allowed to learn the first layer

according to the unsupervised algorithm. After 4000 iterations, the first layer had

converged to a set of 8 pairs of masks. Each of these 8 pairs represents the input

to one type hidden unit. These masks are vertically-oriented "edge-detectors"

(bandpass filters) with differing spatial frequency and phase sensitivity. Pairs of

masks for the left and right images always have approximately the same shape.

although they may have differing phase sensitivity.

These masks were convolved with the images (the left mask was convolved with

the left image, and the right mask with the right image, and the two results were

summed and rectified) to produce a pattern of activity at the hidden layer. Figure

11.2 shows this activity, and we can see that the last four masks are disparity-

sensitive since they respond preferentially to either the 2 pixel disparity or the

zero disparity.

... L
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Figure 11.4: Output layer response averaged over ten different stereogram inputs
With the same disparity.

Figure 11.5: Output layer response averaged over ten stereograms with a central
2 pixel disparity square and zero disparity surround.

Since we were interested in disparity information, we trained the second layer

using only the last four hidden unit types. The second layer had 1024 (=4x16x16)

inputs organized as a 16x16 receptive field in each of the last four hidden unit

.'planes". The outputs had no nonlinearity. Training was performed by scanning

over the hidden unit activity pattern (successive examples overlapped by 8 pixels)

and 6000 iterations were used to produce the second-layer weights. The masks

that were learned were then convolved with the hidden unit activity pattern to

produlce an output unit activity pattern, shown in figure 11.3.

17he thir i i II iit is sensitive to a Chlan 1e in Iisparity a. idepth , 'rel. If vwe
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generate ten different random-dot stereograms and average the output results, we

see that the other outputs are also sensitive (on average) to disparity changes,

but not as much as the third (figure 11.4). The averaged results of presenting

10 stereograms with a central 2 pixel disparity square against a zero disparity

background are shown in figure 11.5. Note that the ability to detect disparity

edges requires the rectification nonlinearity at the hidden layer, and that no purely

linear function has this property.

11.2 How it did Stereo

The algorithm for stereo which the network has discovered can be understood in

terms of simple linear operations on image pairs. Since the image is anisotropically

filtered noise, the eigenvectors learned by the first layer will be oriented filters

which respond in the direction of highest variance. They are therefore vertically

oriented bandpass filters which respond optimally to the horizontal components

in the input. The left and right masks for any hidden unit tend to converge to

the same filter (perhaps with a phase shift). The response of the hidden unit is

found by adding the responses of all the inputs, which means that the left and

right mask outputs are added.

Adding the left and right mask outputs is equivalent to optically "interfering"

the two convolution results. A rectification linearity is equivalent to squaring

and taking the square root, and we know that squaring the sum of the left and

right filters will yield terms which contain their cross correlation, in addition to

the sum of the energies. We have thus performed a bandlimited cross-correlation,

which is one method for computing stereo disparity. This procedure has effectively

transformed the relative phase difference of bandlimited components of the left

and right images into an amplitude change, and this amplitude is evident as the

response of the rectified hidden units. (See [Sanger. 1988c] for a discussion of the
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use of bandlimited cross-correlation for stereopsis. See also [Daugman, 1988a] for

a very closely related technique.) The fact that some of the hidden units have left

and right masks with differing relative phase means that these units will respond

to non-zero disparity better than to zero disparity. In other words, the "phase

offset" determines the region of disparity sensitivity.

The amplitude information from the original image is also present in thUe hi dden

units, and this explains the "blotchy" appearance in figure 11.2. The hidden layer

responses are a combination of the disparity and the intensity information. During

training, hidden units maximize their variance by responding to either intensity

information or disparity information or both. It is for this reason that we see some

units which respond preferentially to one type of data or the other. Note that

adjacent hidden units of one type are not uncorrelated, and that non-adjacent

hidden inits of differing types are not necessarily uncorrelated. Hidden units of

different types at the same spatial position are uncorrelated, however, since the

algorithm trained them this way.

After the first layer converged, the second layer was trained. The second layer

was linear, so the masks which are learned will correspond to the eigenvectors of

the spatial correlation function present at the hidden layer. Since only the last

four hidden unit types were used, there was always a strong edge present in the

center of the input, due to the disparity edge in the original image. Therefore,

a horizontally-oriented edge detector at the second layer would be capable of

responding well to this edge. Other second-level masks might respond better to

the higher-frequency patterns generated from the image intensity information.

T. Poggio has pointed out that such a system could also be used for computing

motion information. Disparity is equivalent to motion along a horizontal line

(under epipolar assumptions on the cameras), so any system capable of measuring

disparity should be able to measure motion of points between two frames in a

sequence. We have not yet tried this. but it should yield interesting results.
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11.3 Significance

The method for detecting disparities which was found by the first layer (through

the hidden units) is a very simple algorithm equivalent to bandlimited cross-

correlation (for a partial review of related algorithms, see [Sanger, 1988c]). The

ability of the second layer to detect disparity edges is a straightforward hierarchi-

cal extension of this algorithm. The fact that a network could learn to perform

this task does not reflect upon the innate computational power of the network. It

does show that simple solutions to apparently hard problems can often be found

using unsupervised algorithms. This case presents an important example of the

type of information available from unsupervised algorithms. The network struc-

ture is not sufficient to produce outputs which compute the actual disparity or

rate of change of disparity. There will always be incorporated pattern information

as well, and the values produced will not be linearly related to the actual dispar-

ities. Nevertheless, the network has found a representation for the data which

makes much of the important disparity information explicit. The construction of

subsequent processing stages now seems considerably more straightforward than

it might without this representation.

We should also note that the information at the hidden layer is present as

spatial patterns of variance, rather than intensity. This conversion of disparity to

variance is a typical result for the Generalized Hebbian Algorithm. The algorithm

is attempting to maximize the variance, so it will do this by discovering filters

which measure high-variance components of the input. In order to convert variance

into intensity, we must rectify and spatial filter, which is what the second layer

does. Note that without the rectification, it is not possible to detect disparity

edges, since no linear function of the input could have this response. This therefore

provides an example of the increase in computational power that can be gained

from even a very simple type of nonlinearity in a two-layer network.

The biological relevance of this network structure is not clear. There is some



116 CHAPTER 11. LEARNING STEREOPSIS

evidence that inputs from the two eyes are sunmed during processing, but in

general, most cells in the visual cortex of primates are not binocular, but rather

respond preferentially to one eye or the other [Poggio and Poggio, 1984]. Probably

the only conclusion we can draw is that there exist very simple algorithms which

are capable of performing early stereo analysis.



Chapter 12

Conclusion

12.1 Contents of the Thesis

In this thesis, we proposed a new algorithm for unsupervised learning in multilayer

feedforward neural networks, and applied the algorithm to

1. texture segmentation,

2. cortical development models,

3. image coding, and

4. stereopsis.

The algorithm finds the eigenvectors of the input correlation matrix, and thus

is equivalent to performing a Karhunen-Lobve expansion of the input. The eigen-

vectors are found using only samples from the input distribution, without the

need to explicitly compute its correlation matrix. This gives the algorithm the

ability to find the first few eigenvectors of large-dimensional inputs, a task which

may be impractical using other techniques. The outputs are uncorrelated, and

are ordered by decreasing variance. Training additional outputs does not require

retraining previously learned weights. These are useful properties for a whitening

filter, or any filter for which the signal to noise ratio must be maximized.

117
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12.2 Other Work

There is much other work in the field of neural networks which relates to what

we have shown here, and this work has been discussed in previous chapters. The

Generalized Hebbian Algorithm is not the only way to derive the Karhunen-Loeve

transform, aad it may not be the most efficient. It represents a method by which

a neural network can be made to perform this task. The Generalized Hebbian

Algorithm specifies how the problem of finding the KLT can be broken down

into local computations which can be performed by simple "neuron-like" units.

However; we should point out that the existing algorithm known as Self-supervised

Backpropagation is extremely similar and almost mathematically equivalent. The

major difference between GHA and SSBP is that GHA finds the eigenvectors

in order while SSBP finds a linear combination of the eigenvectors such that

the outputs all have approximately equal variance. For many applications, this

fact will not make any difference in selection of an algorithm, while for certain

applications one or the other may be more useful.

Linsker [19881 and others predicted that some form of Hebbian learning al-

gorithm must exist which can derive more than the principal eigenvector. The

Generalized Hebbian Algorithm is just such an algorithm. It may not be the only

such algorithm, since a winner-take-all strategy seems to give almost equivalent

results in some cases [Barrow, 1987].

12.3 Problems

We have defined optimality in terms of the ability to linearly reconstruct the input

vector given the outputs of the network. However, this criterion is not equivalent

to maximizing information [Linsker, 1988b], and is not necessarily meaningful in

many cases. The fact that the algorithm is unsupervised means that a layer of a

large network trained using the Generalized Hebbian Algorithm is not necessarily
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optimized for whatever task the entire network is performing. In any particular

case, a supervised algorithm such as Backpropagation may be able to perform bet-

ter. A further problem is that the algorithm is numerically poor in the sense that

errors in computation of eigenvectors cause increased errors in the computation

of subsequent eigenvectors. If there is a large number of outputs, this means that

the later ones may have weights which differ greatly from the desired eigenvectors.

The Generalized Hebbian Algorithm has been proven to converge only for

linear networks. It is the author's belief that the algorithm is not guaranteed to

converge in the nonlinear case, due to local minima in the energy surface. It has

been impossible, so far, to actually derive the energy function which the algorithm

is following, so a detailed analysis is lacking. The effects of nonzero means and

different nonlinearities are not well understood. These are important problems

with the analysis presented here, and should be solved if we are to have a rigorous

understanding of the behavior of this algorithm. Empirically, it seems that the

algorithm performs well for both linear and nonlinear net works. Theoretically, the

nonlinear case is much more difficult to analyze, and many important questions

remain.

12.4 Understanding Neural Networks

The relationship between the algorithm proposed here and the Singular Value De-

composition, Principal Components Transform, and Karhunen-Loeve Transform

has been explained. The fact that these transforms are well studied in other do-

mains gives a rigorous mathematical background from which we can extract a

clear understanding of the function of unsupervised neural networks. This back-

ground, may also help us to understand the function of other algorithms (both

supervised and unsupervised) for training networks.
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12.5 Future Work

It is clear that much work remains to be done to determine the effect of nonlinear-

ities on the learning algorithm. It is important to gain an understanding of their

effect on the computational power of the network. Perhaps other nonlinearities

might yield different methods of solving problems. The rectification nonlinearity

which was demonstrated above is very simple, yet it was able to yield some useful

behavior when applied to a stereo algorithm.

The theoretical relationship between the Generalized Hebbian Algorithm and

the maximization of output information should be studied. We know that for lin-

ear networks and Gaussian inputs with certain types of noise, maximizing the out-

put variance also maximizes the information. But in the nonlinear, non-Gaussian

case, we do not understand whether these two ideas are related.

There are also many potential applications of unsupervised networks which

have not been attempted. Tomaso Poggio has suggested that it would be interest-

ing to have a network learn' three-dimensional filters which are sensitive in time,

as well as two spatial dimensions. They could converge to the eigenvectors of a

spatio-temporal distribution, and would therefore function as motion detectors,

or creation/annihilation detectors [Fahle and Poggio, 1981]. A nonlinear network

might be able to find velocity-sensitive or directionally selective units with similar

responses to those found in biological visual systems.

There are other potential applications outside the field of computer vision.

Principal Components Analysis is an important technique for analyzing any sta-

tistical data, and we would therefore expect that neural nets which find the com-

ponents would have applicability to many different problems. This thesis has

presented just a few results and applications of a neural network training algo-

rithm which should provide an important method for the analysis of real-world

data.
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